# **Calcutta Farms Ltd**

# **Calcutta Industrial Zone Plan Change**

# **Infrastructure Report**

November 2021







# **Document control**

| Project identification       |                                                                                                                                                               |                                                                            |  |  |  |  |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|--|--|
| Client                       | Calcutta Farms Ltd                                                                                                                                            |                                                                            |  |  |  |  |
| <b>Client representative</b> | Scott Bicknell – Vero                                                                                                                                         | S                                                                          |  |  |  |  |
| BBO details                  |                                                                                                                                                               | Bloxam Burnett & Olliver (BBO)<br>Level 4, 18 London Street, Hamilton 3240 |  |  |  |  |
| <b>BBO</b> representative    | Dave Nelson – Project Manager                                                                                                                                 |                                                                            |  |  |  |  |
| BBO rep. contact details     | 021 450 577                                                                                                                                                   | dnelson@bbo.co.nz                                                          |  |  |  |  |
| Job number/s                 | 146930.02                                                                                                                                                     |                                                                            |  |  |  |  |
| Job name                     | Calcutta Industrial Zone Plan Change                                                                                                                          |                                                                            |  |  |  |  |
| Report name and number       | Infrastructure Report                                                                                                                                         |                                                                            |  |  |  |  |
| Date / period ending         | November 2021                                                                                                                                                 |                                                                            |  |  |  |  |
| File path                    | C:\12dsynergy\data\10.7.120.14\146930.02 - Industrial Development_5122\04<br>Infrastructure\Reports\Calcutta Farms Employment Zone Infrastructure Report.docx |                                                                            |  |  |  |  |

| Report status           |                                                   |           |            |
|-------------------------|---------------------------------------------------|-----------|------------|
| Status                  | Name                                              | Signature | Date       |
| Report prepared by      | Jean-Pierre Velloen &<br>Constantinos Fokianos    | f dif     | 23/11/2021 |
| Checked by              | Bernie Milne                                      | offen     | 23/11/2021 |
| Approved for issue (V1) | Kathryn Drew – Regional<br>Leader – Bay of Plenty | AA        | 23/11/2021 |

| Document history |                                     |           |            |
|------------------|-------------------------------------|-----------|------------|
| Version          | Changes                             | Signature | Issue date |
| V1               | Draft for client review             | At        | 12/11/2021 |
| V1               | Final for plan change lodgement     | Att       | 23/11/2021 |
| V3               | Updated in response to peer reviews | At        | 2/8/2022   |







# Table of contents

| 1.                                                                                                                                       | Introduction                                                                                                                                                                                                                                                                                                                 | .1                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 1.1                                                                                                                                      | Purpose of this report                                                                                                                                                                                                                                                                                                       | . 1                                                                                                       |
| 1.2                                                                                                                                      | Relevant background                                                                                                                                                                                                                                                                                                          | . 1                                                                                                       |
| 1.3                                                                                                                                      | Site and legal description                                                                                                                                                                                                                                                                                                   | . 2                                                                                                       |
| 2.                                                                                                                                       | Earthworks                                                                                                                                                                                                                                                                                                                   | .3                                                                                                        |
| 2.1                                                                                                                                      | Earthworks philosophy                                                                                                                                                                                                                                                                                                        | . 3                                                                                                       |
| 2.2                                                                                                                                      | Erosion and sediment control                                                                                                                                                                                                                                                                                                 | . 3                                                                                                       |
| 2.3                                                                                                                                      | Geotechnical investigations                                                                                                                                                                                                                                                                                                  | . 3                                                                                                       |
| 2.4                                                                                                                                      | Future consents                                                                                                                                                                                                                                                                                                              | . 4                                                                                                       |
| 3.                                                                                                                                       | Transportation                                                                                                                                                                                                                                                                                                               | .5                                                                                                        |
| 3.1                                                                                                                                      | Access arrangements                                                                                                                                                                                                                                                                                                          | . 5                                                                                                       |
| 3.2                                                                                                                                      | Design standards                                                                                                                                                                                                                                                                                                             | . 6                                                                                                       |
| 4.                                                                                                                                       | Water                                                                                                                                                                                                                                                                                                                        | .7                                                                                                        |
| 4.1                                                                                                                                      | Existing reticulation                                                                                                                                                                                                                                                                                                        | . 7                                                                                                       |
| 4.2                                                                                                                                      | Demand calculations and assumptions                                                                                                                                                                                                                                                                                          | . 7                                                                                                       |
| 4.3                                                                                                                                      | Proposed water supply network options                                                                                                                                                                                                                                                                                        | . 8                                                                                                       |
| 4.3.1                                                                                                                                    | Option 1 – Upgrade Existing Network                                                                                                                                                                                                                                                                                          | . 8                                                                                                       |
| 4.3.2                                                                                                                                    | Option 2 – Use Existing Onsite Boreholes/Groundwater Take                                                                                                                                                                                                                                                                    | . 8                                                                                                       |
| 4.3.3                                                                                                                                    | Preferred Option                                                                                                                                                                                                                                                                                                             | 11                                                                                                        |
| 4.4                                                                                                                                      | Design requirements                                                                                                                                                                                                                                                                                                          | 11                                                                                                        |
| 4.5                                                                                                                                      | Proposed reticulation                                                                                                                                                                                                                                                                                                        | 11                                                                                                        |
| ч.5                                                                                                                                      | roposeureiteution                                                                                                                                                                                                                                                                                                            | тт                                                                                                        |
| 4.6                                                                                                                                      | Firefighting design requirements                                                                                                                                                                                                                                                                                             |                                                                                                           |
| -                                                                                                                                        | •                                                                                                                                                                                                                                                                                                                            | 11                                                                                                        |
| 4.6                                                                                                                                      | Firefighting design requirements                                                                                                                                                                                                                                                                                             | 11<br>14                                                                                                  |
| 4.6<br>5.3.1                                                                                                                             | Firefighting design requirements<br>Option 1 – Upgrade Existing Network and WWTP                                                                                                                                                                                                                                             | 11<br>14<br>15                                                                                            |
| 4.6<br>5.3.1<br>5.3.2                                                                                                                    | Firefighting design requirements<br>Option 1 – Upgrade Existing Network and WWTP<br>Option 2 – Centralised Treatment Plant                                                                                                                                                                                                   | 11<br>14<br>15<br>15                                                                                      |
| 4.6<br>5.3.1<br>5.3.2<br>5.3.3                                                                                                           | Firefighting design requirements<br>Option 1 – Upgrade Existing Network and WWTP<br>Option 2 – Centralised Treatment Plant<br>Option 3 – On-site Wastewater Disposal                                                                                                                                                         | 11<br>14<br>15<br>15<br>16                                                                                |
| 4.6<br>5.3.1<br>5.3.2<br>5.3.3<br>5.3.4                                                                                                  | Firefighting design requirements<br>Option 1 – Upgrade Existing Network and WWTP<br>Option 2 – Centralised Treatment Plant<br>Option 3 – On-site Wastewater Disposal<br>Preferred Option                                                                                                                                     | 11<br>14<br>15<br>15<br>16<br><b>17</b>                                                                   |
| 4.6<br>5.3.1<br>5.3.2<br>5.3.3<br>5.3.4<br><b>6.</b>                                                                                     | Firefighting design requirements<br>Option 1 – Upgrade Existing Network and WWTP<br>Option 2 – Centralised Treatment Plant<br>Option 3 – On-site Wastewater Disposal<br>Preferred Option<br>Stormwater                                                                                                                       | 11<br>14<br>15<br>15<br>16<br><b>17</b>                                                                   |
| 4.6<br>5.3.1<br>5.3.2<br>5.3.3<br>5.3.4<br><b>6.</b>                                                                                     | Firefighting design requirements<br>Option 1 – Upgrade Existing Network and WWTP<br>Option 2 – Centralised Treatment Plant<br>Option 3 – On-site Wastewater Disposal<br>Preferred Option<br>Stormwater                                                                                                                       | 11<br>14<br>15<br>15<br>16<br><b>17</b><br>18                                                             |
| 4.6<br>5.3.1<br>5.3.2<br>5.3.3<br>5.3.4<br><b>6.</b><br>6.1<br>6.2                                                                       | Firefighting design requirements<br>Option 1 – Upgrade Existing Network and WWTP<br>Option 2 – Centralised Treatment Plant<br>Option 3 – On-site Wastewater Disposal<br>Preferred Option<br>Stormwater<br>Catchment description<br>Stormwater design philosophy                                                              | 11<br>14<br>15<br>15<br>16<br><b>17</b><br>17<br>18<br>19                                                 |
| 4.6<br>5.3.1<br>5.3.2<br>5.3.3<br>5.3.4<br><b>6.</b><br>6.1<br>6.2<br>6.2.1                                                              | Firefighting design requirements<br>Option 1 – Upgrade Existing Network and WWTP<br>Option 2 – Centralised Treatment Plant<br>Option 3 – On-site Wastewater Disposal<br>Preferred Option<br>Stormwater<br>Catchment description<br>Stormwater design philosophy<br>Stormwater treatment                                      | 11<br>14<br>15<br>15<br>16<br><b>17</b><br>18<br>19<br>20                                                 |
| 4.6<br>5.3.1<br>5.3.2<br>5.3.3<br>5.3.4<br><b>6.</b><br>6.1<br>6.2<br>6.2.1<br>6.2.2                                                     | Firefighting design requirements<br>Option 1 – Upgrade Existing Network and WWTP<br>Option 2 – Centralised Treatment Plant<br>Option 3 – On-site Wastewater Disposal<br>Preferred Option<br>Stormwater<br>Catchment description<br>Stormwater design philosophy<br>Stormwater treatment<br>Drainage                          | 11<br>14<br>15<br>15<br>16<br><b>17</b><br>18<br>19<br>20<br>20                                           |
| 4.6<br>5.3.1<br>5.3.2<br>5.3.3<br>5.3.4<br><b>6.</b><br>6.1<br>6.2<br>6.2.1<br>6.2.2<br>6.2.3                                            | Firefighting design requirements<br>Option 1 – Upgrade Existing Network and WWTP<br>Option 2 – Centralised Treatment Plant<br>Option 3 – On-site Wastewater Disposal<br>Preferred Option<br>Stormwater<br>Catchment description<br>Stormwater design philosophy<br>Stormwater treatment<br>Drainage<br>Attenuation           | 11<br>14<br>15<br>15<br>16<br><b>17</b><br>18<br>19<br>20<br>20<br>20                                     |
| 4.6<br>5.3.1<br>5.3.2<br>5.3.3<br>5.3.4<br><b>6.</b><br>6.1<br>6.2<br>6.2.1<br>6.2.2<br>6.2.3<br>6.2.3<br>6.2.4                          | Firefighting design requirements                                                                                                                                                                                                                                                                                             | 111<br>14<br>15<br>15<br>16<br>17<br>17<br>18<br>19<br>20<br>20<br>20<br>20<br>20                         |
| 4.6<br>5.3.1<br>5.3.2<br>5.3.3<br>5.3.4<br><b>6.</b><br>6.1<br>6.2<br>6.2.1<br>6.2.2<br>6.2.3<br>6.2.4<br>6.2.5                          | Firefighting design requirements<br>Option 1 – Upgrade Existing Network and WWTP<br>Option 2 – Centralised Treatment Plant<br>Option 3 – On-site Wastewater Disposal<br>Preferred Option<br>Stormwater<br>Catchment description<br>Stormwater design philosophy<br>Stormwater treatment<br>Drainage<br>Attenuation<br>Swales | 111<br>14<br>15<br>15<br>16<br><b>17</b><br>17<br>18<br>19<br>20<br>20<br>20<br>20<br>21                  |
| 4.6<br>5.3.1<br>5.3.2<br>5.3.3<br>5.3.4<br><b>6.</b><br>6.1<br>6.2<br>6.2.1<br>6.2.2<br>6.2.3<br>6.2.3<br>6.2.4<br>6.2.5<br>6.3          | Firefighting design requirements                                                                                                                                                                                                                                                                                             | 111<br>14<br>15<br>15<br>16<br>17<br>18<br>19<br>20<br>20<br>20<br>20<br>20<br>21<br>21                   |
| 4.6<br>5.3.1<br>5.3.2<br>5.3.3<br>5.3.4<br><b>6.</b><br>6.1<br>6.2<br>6.2.1<br>6.2.2<br>6.2.3<br>6.2.4<br>6.2.5<br>6.3<br>6.3.1          | Firefighting design requirements                                                                                                                                                                                                                                                                                             | 111<br>14<br>15<br>15<br>16<br>17<br>17<br>18<br>19<br>20<br>20<br>20<br>20<br>20<br>21<br>21<br>21<br>22 |
| 4.6<br>5.3.1<br>5.3.2<br>5.3.3<br>5.3.4<br><b>6.</b><br>6.1<br>6.2<br>6.2.1<br>6.2.2<br>6.2.3<br>6.2.4<br>6.2.5<br>6.3<br>6.3.1<br>6.3.2 | Firefighting design requirements                                                                                                                                                                                                                                                                                             | 11<br>14<br>15<br>15<br>16<br>17<br>18<br>19<br>20<br>20<br>20<br>20<br>20<br>21<br>21<br>21<br>22<br>22  |



| 6.3.6  | Additional Stormwater Information/Assessment                | 24 |
|--------|-------------------------------------------------------------|----|
| 7.     | Utility services                                            | 25 |
| 7.1    | Power supply                                                | 25 |
| 7.2    | Telecommunications                                          | 26 |
| 8.     | Conclusion and recommendations                              | 27 |
| Append | dix A – Water and wastewater demand calculations            |    |
| Append | dix B – Hydrological advice on water supply prepared by WGA |    |
| Append | dix C – Water and wastewater indicative layouts             |    |
| Append | dix D – Utility providers correspondence                    |    |
| Append | dix E – Stormwater indicative layout plan                   |    |
| Append | dix F – WSP laboratory sieving test results                 |    |
| Append | dix G – Permeability testing results from CMW Geoscience    |    |
| Append | dix H – SWWM model catchment characteristics                |    |
| Append | dix I – Soakage sizing calculations                         |    |

- Appendix J SWMM modelling outputs
- Appendix K Mangawhero Stream Memo
- Appendix L Response to Peer Review Matters



# 1. Introduction

Bloxam Burnett & Olliver Ltd (BBO) has been commissioned by Veros, on behalf of Calcutta Farms Ltd (Calcutta), to come up with a workable three waters design solution in support of the Calcutta Plan Change application. The Plan Change seeks to rezone approximately 41ha of land, directly south of Tauranga Road/SH24 in Matamata from its current rural land use and zoning to an Industrial Zone. Of this 41ha, the developable area is 32.5ha, with the balance being set aside for roads and landscape buffer/swale networks.

### **1.1** Purpose of this report

The purpose of this report is to provide an overview, at conceptual level, of the anticipated infrastructure associated with the Plan Change Area. The information provided herein outlines the existing situation, the alternatives considered and thereafter outlines the preferred approach for the purposes of demonstrating that there is a workable design solution in terms of both feasibility and capacity. It is expected that the preferred approach will be refined through the plan change process, once further engagement with Regional Council has been completed and upon the receipt of further information from Council around capacity at the Matamata wastewater treatment plant.

## 1.2 Relevant background

Calcutta is a farming entity owned by Kevin and Rosemary Balle. The Balle Family have a strong presence in Matamata as a large-scale vegetable grower, employer of local people and provider of work to Matamata small business.

With a vision to extend Matamata to the east in a sustainable manner by bringing together a connected, engaged and resilient community, Calcutta has developed a Master Plan for a 250ha pocket of land spanning from Tauranga Road on the north-east boundary to Banks Road on the south-west boundary in Matamata (See **Figure 1**). Whilst this plan is conceptual in nature, it creates a spatial framework from which the Balle's intend to progressively and sustainably develop, in the best interests of the Matamata community.



Figure 1: Calcutta Master Plan (Employment Zone identified in light blue)

Calcutta intends to develop specific areas of this land holding in an integrated and staged manager, refining the 250ha masterplan concept as more detailed development plans for each stage are prepared and the associated plan changes and resource consents sought.



Under the Master Plan, an approximately 32.5ha portion of the land adjoining Tauranga Road (State Highway 24) has been identified as an 'Employment Zone'.

The Plan Change gives effect to the Master Plan by rezoning the identified Employment Zone to an Industrial.

For the purpose of this report, the water and wastewater calculations have been provided for both Commercial and Industrial land uses to encapsulate the previous terminology for the zoning.

## **1.3** Site and legal description

The site for the proposed Plan Change is land that is currently zoned rural which is located on the eastern edge of Matamata, and directly east of its existing urban zone extent. The site is bounded by Tauranga Road (or State Highway 24) to the north, Council's transfer station to the east and rural zoned land to the south and west that is owned by Calcutta. Further east is the Mangawhero Stream.

The Plan Change area compromises approximately 41ha as shown in Figure 2 below.

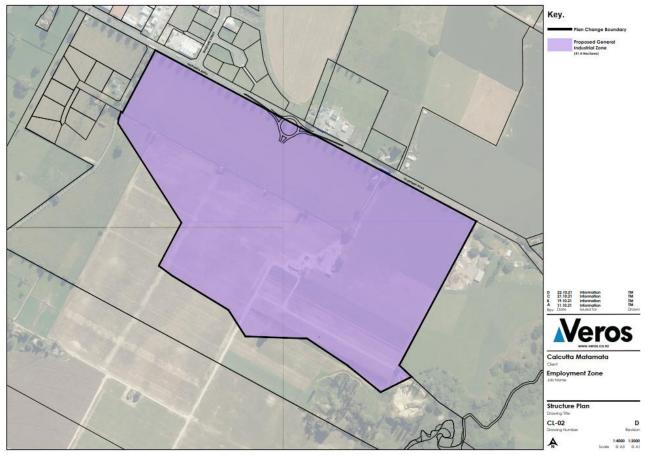



Figure 2: Plan Change Area (Source - Veros)

The Plan Change Area is contained within one Certificate of Title legally described as Lot 200 DP 548170 (937553). That underlying title has a size of 68ha and is owned by Calcutta Farms No 2 Ltd.



# 2. Earthworks

# 2.1 Earthworks philosophy

Earthworks will be undertaken, as required, throughout the Plan Change area and will include excavations for installation of drainage networks, recontouring and formation of future building platforms and roading networks which will support the stormwater management of the site.

The volume of the earthworks will be determined with each stage as it is developed. Preliminary modelling to ascertain expected volumes associated with the earthworks has not been completed at the time of preparing this report. However, given the relatively level nature of the landform, proposed earthworks are expected to typically involve and average cut and fill of approximately 1m for the purpose of creating level to very gently graded lots and to enable stormwater flows to grade towards the wetland network on the southern boundary of the Plan Change site.

# 2.2 Erosion and sediment control

The site will be subject to a Waikato Regional Council earthworks consent and will be monitored by them throughout the earthworks process. That consent will be sought prior to development and once preliminary modelling of earthworks has been completed.

Within each development stage, the site will be further divided into different sub-catchments where specific erosion and sediment control measures will be adopted. The specific erosion and sediment control details will be provided at time of construction, with those measures being designed in accordance with Waikato Regional Council's Erosion and Sediment Control Guide for Soil Disturbing Activities 2009 and where needed, the Auckland Council GD05 document will be used for further guidance.

Areas where earthworks are completed will be stabilised progressively with either pavement aggregates being constructed across the completed road subgrades or through topsoiling and regrassing within the berms and lots. Progressive stabilisation will ensure that the duration of soil exposure is minimised and will also aid with mitigation of potential dust effects.

### 2.3 Geotechnical investigations

A site-specific Geotechnical Investigation Report (GIR) has been prepared for the Plan Change area by CMW Geosciences, dated 16 September 2021. This is supplemented with a letter from CMW Geosciences regarding site soil permeability, dated 30 August 2021.

The CMW Geoscience reporting showed the site has an average topsoil thickness of 200mm. Under the topsoil a Hinuera Formation was identified which is broken down as follows:

- Stiff to hard clayey silt and silt ranging from 0.7 to 2.5m in thickness.
- Loose to medium dense sand and silty sand ranging from 0.9 to 4.8m in thickness.
- Medium dense to dense pumiceous sand with a depth unknown.
- Dense to very dense pumiceous sand, with its depth also unknown.

The reporting identified that geohazards primarily exist in the form of fault rupture, liquefaction, lateral spread, slope stability and fill induced static settlement and the level of risk presented by each of these is low to very low.

The reporting also concludes that the site is suitable for future industrial development and provides recommendations for earthworks, building foundations and civil infrastructure which all present as relatively standard engineering constraints that can readily be accommodated in design and construction.



The geotechnical reporting shows that the standing groundwater table is approximately 12m to 15m below the existing ground surface. A shallower (i.e. perched) groundwater table was also observed between 2.7m and 4.8m below existing ground surface.

The calculated rates for soakage to ground exceed the minimum design soakage rate of outlined by the MPDC Guidelines, demonstrating that soakage is a viable solution for stormwater disposal from the development. The actual stormwater philosophy is described in more detail in section 6.2 of this report and provides for a combination of soakage, treatment, conveyance, and attenuation devices with a new discharge point to the Mangawhero Stream gully network for residual treated water.

# 2.4 Future consents

Bulk earthworks across the site are likely to require consent authorisation from both the District and Regional Council. These consents will be sought prior to development of the site and once the extent of the works and the proposed erosion and sediment controls are further understood. A stormwater discharge consent may also be required.



# 3. Transportation

An Integrated Transportation Assessment (ITA) has been completed by BBO which considers the traffic and transportation effects of the Plan Change area on the wider transportation environment. It also provides recommendations in relation to access arrangements, the configuration of that access, the internal roading network, pedestrian connections and other off-site transportation improvements that are required.

Some of these matters are touched on below, however, for further detail please refer directly to that report.

### **3.1** Access arrangements

The plan change area is proposed to be serviced by one connection point (intersection) to Tauranga Road (State Highway 24) approximately 285m southeast of the SH24/Rockford Street intersection. This access will be in the form of a proposed three leg single circulate lane roundabout, with single entry and exit lane approaches, which is shown in **Figure 3**.

This roundabout will be the sole connection point from SH24 into the Plan Change site. This roundabout may also be adapted to become a four-leg roundabout in the future to provide access to the land to the north, as and when developed for industrial purposes.

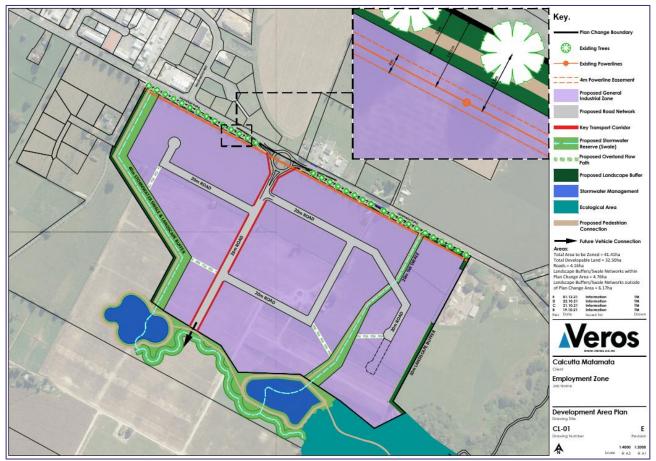



Figure 3: Development Area Plan (Source - Veros)

Thereafter a network or local and collector roads will be required to service the development. The Development Area Plan (**Figure 3** above) provides an indication of the likely location of these roads to demonstrate how the area will be serviced. The key road being the Spine Road (i.e. the north-south road) that links to the roundabout and provides a future connection to the land south of the site.



# 3.2 Design standards

The transportation network for the plan change area will be designed in accordance with the RITS and the recommendations of the BBO ITA.

Typical cross sections are proposed in the ITA with the typical section for the Spine Road (Collector Road) replicated below in **Figure 4** and the local road replicated below in **Figures 4** and **5** respectively. These cross sections will be refined taking into account Council feedback through the consenting and detailed design stages, however, at present they generally provide for the following:

- Collector Road
  - 23m road reserve that provides for a 10m wide carriageway, with an additional 2.5m rain garden/planted berm and parking on both sides, 1 to 1.2m wide berms, a 3m wide shared path on one side and a 1.8m wide path on the other side.
- Local Road
  - 20m road reserve that provides for a carriageway width of 7m with an additional 2.5m parking on both sides, a single cross-fall to a rain-garden on one side, 1m berms, a 1.8m wide footpaths on either side.

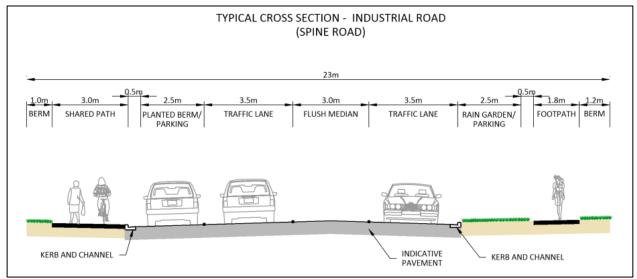
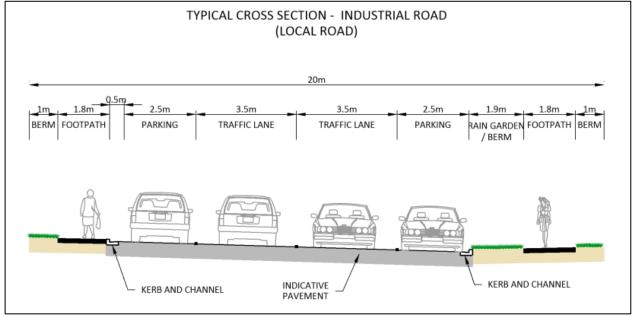
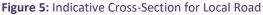





Figure 4: Indicative Cross-Section for the Spine Road (Collector Road)







# 4. Water

# 4.1 Existing reticulation

The only water reticulation adjacent the plan change site is a 50mm diameter rider main, installed in 1946, that is located along the northern boundary of the site and within Tauranga Road/SH24. The Council's GIS portal noted the line is in a poor condition. The intersection of Tauranga Road and Rockford Street, just west of the site, has a 150mm diameter uPVC watermain located in the berm which was installed in 2009 and it is noted as being in excellent condition. Refer to **Figure 6** below for the location of this infrastructure.

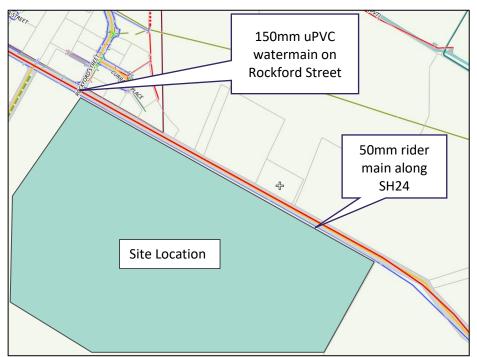



Figure 6: Existing Water Reticulation (Source - MPDC GIS October 2021)

Preliminary engagement with Matamata Piako District Council staff was undertaken, during which, they indicated that development of the plan change area would trigger significant pipe upgrades because the existing network and current zoned catchment is already at capacity. Furthermore, Council confirmed they do not have additional supply capacity available to service the plan change site.

MPDC have also confirmed that the works associated with the Raungaiti bore and wastewater treatment plant has been allocated to currently zoned land in Waharoa and Matamata, and thus has limited capacity to service the Calcutta site. Furthermore, the current funding window for this work is between 2023/2031, as set out in the LTP. As such, the timing around availability of this supply is uncertain. Council also has funding it its LTP to scope another bore in close proximity to their existing bore by the racecourse in Matamata. No water volume, quality or allocation matters relating to this bore have been scoped at present.

# 4.2 Demand calculations and assumptions

The demand and assumptions around the demand calculations were based on the requirements set out in the Waikato Regional Infrastructure Technical Specification (RITS) for water demand requirements. The standard values used are listed as follows:

- 260 litres per person per day was used (RITS 6.2.3).
- 45 people per hectare used for Industrial zoning (RITS Table 5.3) and 30 people per hectare used for a Commercial zoning (RITS Table 5.3) for comparison purposes.
- Peaking factor of 5 used as recommended by the RITS.



• Assumes 12% of the area to be developed will be used for roads/accessways.

**Table 1** below shows the resulting peak flow and average daily demand using the above assumptions and parameters. Please refer to **Appendix A** for a breakdown of the calculation spreadsheet. These calculations are based on standard industrial land uses, and not wet industries.

|                     | Peak Flow | Average daily demand |
|---------------------|-----------|----------------------|
| Industrial land use | 22.01 l/s | 380.3m <sup>3</sup>  |
| Commercial land use | 14.67 l/s | 253.5m <sup>3</sup>  |

Table 1: Water supply demand calculations

For the purpose of this assessment, the industrial flows are what the design is based on as they are higher than the commercial thresholds. The proposed water usage of 380.3m<sup>3</sup>/day would equate to a maximum annual volume of 138,809m<sup>3</sup>. The actual usage is likely to be less than this due to non-working days and commercial shut down periods.

### 4.3 **Proposed water supply network options**

A number of options have been considered as to how to provide a suitable and sufficient potable water supply. These are summarised below, along with the preferred approach.

#### 4.3.1 Option 1 – Upgrade Existing Network

This option would involve a connection to the existing public network for both the potable and firefighting water supply and with the associated upgrades of the water reticulation network. Ultimately, this option would have been the preferred option as it is considered to be a simpler, more standard, long-term solution for the development and Council.

The following are the advantages and disadvantages associated with this option:

#### Advantages

- The system can be vested to Council once completed.
- $\circ$   $\;$  There will be no need for storage tanks or ponds for firefighting purposes.

#### • Disadvantages

- Full extent of upgrades required are unknown. Upgrades will need to be identified with detailed modelling of the network (by others or Council), taking existing consented development and future development into consideration.
- o Council has no funding or upgrades planned in the Long-term Plan (LTP) for this area.
- This option is only feasible if there is water supply capacity.

#### 4.3.2 Option 2 – Use Existing Onsite Boreholes/Groundwater Take

There are a number of existing bores on the wider Calcutta Farm holding, as shown in **Figure 7.** Three of these have active groundwater take permits. The groundwater take permits for each bore, its purpose and its expiration are summarised in **Table 2** below. Figure 7 shows the location of these bores relative to the plan change site, noting that bore 72\_6680 is the closest bore, being located just west of the plan change area.



#### Table 2: Existing Boreholes Consents

| Consent<br>Holder                               | Bore<br>Number | Consent Number   | Max daily and annual volume                                                                                                                                                             | Use                                                   | Expiry                |
|-------------------------------------------------|----------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------|
| Calcutta<br>Farms                               | 72_6068        | 125705           | 16.45m <sup>3</sup> maximum daily volume.                                                                                                                                               | Shed wash<br>down and milk<br>cooling                 | 30 June<br>2028       |
| Waipa<br>Valley<br>Holdings<br>(Kevin<br>Balle) | 72_6680        | AUTH130710.01    | 7,200m <sup>3</sup> maximum daily<br>volume and 327,570m <sup>3</sup><br>maximum seasonal volume <sup>1</sup> .                                                                         | Crop irrigation                                       | 1 March<br>2029       |
| Calcutta<br>Farms                               | 72_7181        | AUTH134035.01.02 | 5,400m <sup>3</sup> maximum daily<br>volume, or which 100,000<br>litres can be used for dust<br>suppression on any given day<br>and maximum annual volume<br>of 248,400m <sup>3</sup> . | For irrigation<br>and dust<br>suppression<br>purposes | 9<br>February<br>2030 |

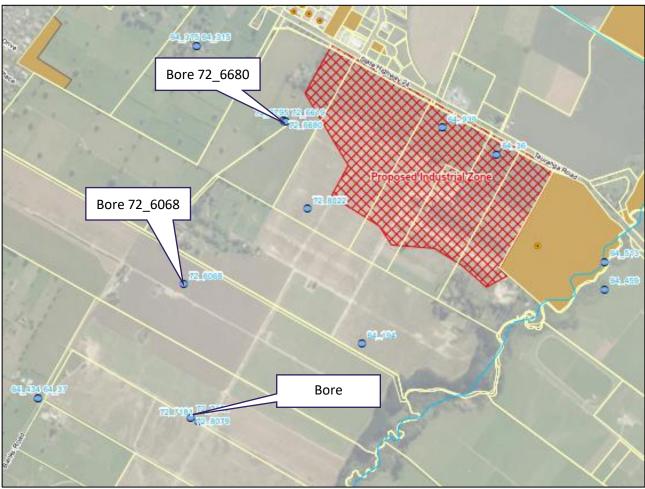



Figure 7: Existing Boreholes Location (Source - WGA)

Two of the above groundwater takes are consented for volumes larger than the proposed requirements of 380.3m<sup>3</sup>/day (and 138,809m<sup>3</sup>per annum).

Due to the proximity of bore 72\_6680 to the plan change site, further investigations have been undertaken by Calcutta Farms to ascertain, what volume of the consented supply is currently used for irrigation purposes



<sup>&</sup>lt;sup>1</sup> Season volume is from 1 July to 30 June the following year.

and what is potentially surplus. That investigation<sup>2</sup>, based on bore results from the period of 1 January 2017 to July 2021, is that:

- The highest daily take was 6,487m<sup>3</sup>;
- The average daily take is 1,425m<sup>3</sup>; and
- Annual take fluctuates between 27,000m<sup>3</sup> to 133,000m<sup>3</sup> which is significantly less than the 327,570m<sup>3</sup> consented volume.

This investigation shows that there is additional capacity for water extraction within bore 72\_6680 which can be reallocated to Council, to service the plan change area, subject to Regional Council approval and confirmation that the water quality in the bore is feasible for use for a potable water supply.

Engagement with the Regional Council has been undertaken with Waikato Regional Council whereby they have confirmed that the allocation transfer is appropriate.

In relation to water quality, Wallbridge Gilbert Aztec (WGA) were engaged to assess water security, (i.e. potential sources of contamination and the likelihood of these contaminating the groundwater supply) water availability, water quality and to provide recommendations of potential treatment options. As part of this work, they have undertaken water quality samples with the results of those samples being compared to the Ministry of Health Guideline Values and Maximum Acceptable Values (MAV)<sup>3</sup> for drinking water where applicable (MOH, 2018).

Their report can be found in **Appendix B** and confirms the following:

- Onsite bores and associated water permits have sufficient volumes to provide water supply to the proposed plan change site. The bore infrastructure is also sound with only minor repairs required.
- Water quality testing has identified that water from bore 72\_6680 has high concentrations of iron and manganese and will require treatment to meet the guidelines for aesthetics and in the case of manganese, the MAV of 0.4 g/m<sup>3</sup>.
- These results are indicative of relatively long residence time in the aquifer which is common in deeper aquifer systems and is an indicator of a more confined system with older groundwater which has dissolved minerals from the rocks that make up the aquifer along the groundwater flow path.
- Iron and manganese treatment generally involves oxidation and filtration. The oxidant chemically oxidizes the iron or manganese (forming a particle) and kills iron bacteria and any other disease-causing bacteria that may be present. The filter then removed the iron and/or manganese particles.
- Arsenic concentrations are below the MAV of 0.01 g/m<sup>3</sup> by a small margin which is potentially due to the long periods that the bore is shutdown in winter. Regular monitoring of the arsenic levels will be required to account for seasonal variations.
- There are potential sources of contamination in the surrounding area (i.e. adjacent land uses that are recorded on WRC's HAIL database), however these are downgradient from the water sources so pose a low risk.
- Treatment of at source water to reach potable requirements is not a limiting factor.

Having established that the water from bore 72\_6680 has surplus capacity that can be reallocated and is of a suitable quality, the advantages and disadvantages of this option are as follows:

#### • Advantages

- No existing public reticulation upgrades required.
- No restriction to potable water supply to the development.
- No requirements to provide re-use tanks on the lots.
- Ability to vest the new reticulation and system to Council.
- Potential bolstering of water supply for Matamata, if connected to the existing reticulation.

<sup>&</sup>lt;sup>3</sup> The Maximum Acceptable Values (MAVs) have been defined by the Ministry of Health for parameters of health significance and should not be exceeded. The Guideline Values are the limits for aesthetic determinants that, if exceeded, may render the water unattractive to consumers.



<sup>&</sup>lt;sup>2</sup> Refer Table 3 of the WGA report for the bore usage for bore 72\_6880 for the period described.

#### • Disadvantages

- Requires a water treatment system to be installed on-site that will need to be transferred to Council for future ownership/management.
- Ongoing water monitoring will be required to ensure water meets Health (Drinking-Water) Amendment Act, October 2007
- The current consent for the groundwater take will need changing to a municipal supply take which creates a consenting risk.
- A dedicated tank, and pumpset, will be required for firefighting requirements of the entire plan change site. This can be provided with a dedicated tank trickle fed from the borehole or potentially making use of the of stormwater ponds for firefighting purposes. Discussions with council will be required for potentially vesting this system.

### 4.3.3 Preferred Option

Although option 1 is simpler, option 2 is the preferred option due to the supply issues that Council has identified and uncertainty of when additional supply would become available. A conceptual reticulation layout, based on option 2 is provided in **Appendix C**.

# 4.4 Design requirements

Detailed water design will be required for each stage in the development. At the first stage, the design will need to address:

- Design and construction of a new water treatment plant, the location of which is to be confirmed.
- An internal reticulation network including connection to the existing Council mains.
- Requirements for firefighting.

Subsequent stages will connect to the above reticulation.

# 4.5 **Proposed reticulation**

The Matamata-Piako District Council Development Manual sets out design and construction standards for water reticulation, potable water supply and firefighting supply in accordance with SNZPAS 4509:2008 (NZ Fire Service Fire Fighting Water Supply Code of Practice). Most often compliance with the code of practice is achieved through traditional pipes and hydrants, however, compliance is possible though alternative means, for example a central tank with booster pump and dedicated supply lines is an acceptable solution.

The proposed water reticulation network will most likely consist of principle mains of either DN250 PE, DN180 PE, &/or DN125 PE and DN63 PE rider mains. The network will be located in the road reserve berms with sluice valves and hydrants located at appropriate locations throughout as required by the RITS.

# 4.6 Firefighting design requirements

The firefighting for this development will need to satisfy the FW3 requirements as set out in SNZ PAS 4509:2008 – New Zealand Fire Service Firefighting Water Supplies Code of Practice.

The principle main and associated hydrant will be provided internal to the development to comply with the Matamata Piako District Council Development Manual and associated firefighting standards. The development will need the following water supply requirements:

- A primary water flow of 25 litres/sec within a radial distance of 135m.
- An additional secondary flow of 25 litres/sec within a radial distance of 270m.
- The required flow will be achieved from a maximum of three hydrants operating simultaneously.



The firefighting water requirements for individual buildings will be accessed during the building consent process. If this identifies that demand exceeds FW3 then the additional supply shall be provided by a privately owned and maintained on lot system, such as a tank and pump.



# 5. Wastewater

# 5.1 Existing reticulation

The reticulation near the proposed development is a 150mm diameter PVC gravity main located in Rockford Street. The intersection of Tauranga Road and Rockford Street has a 150mm diameter PVC gravity main located in the berm which was installed in 2009 and it is noted this line is in and excellent condition. Refer to **Figure** below.

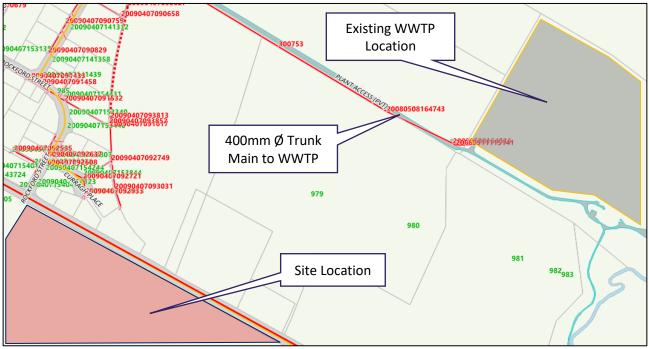



Figure 8: Existing Wastewater Network (Source: MPDC GIS)

Based on GIS there is a 400mmØ Trunk Main which conveys all the wastewater from the Matamata catchment into the WWTP which is located on the eastern side of town, north of Tauranga Road.

Preliminary engagement with Matamata Piako District Council staff was undertaken, during which, they indicated that development of the plan change area would trigger significant upgrades because the existing network (i.e. the trunk main discussed above) and current zoned catchment is already at capacity, for both the network and the wastewater treatment plant.

In relation to the wastewater treatment plant (WWTP) capacity, the WWTP has an existing discharge consent, from the Regional Council, which enables the discharge of 4,000m<sup>3</sup> per day of membrane treated effluent. MPDC have noted this limit is being breached during substantial rain events due to infiltration into the network. MPDC are consequently undertaking infiltration improvement works in their network to reduce this risk. These works along with operational changes and upgrades to the plant are also proposed to help manage the discharge.

### **5.2** Demand calculations and assumptions

The demand and assumptions around the demand calculations were based on the requirements set out in the Waikato Regional Infrastructure Technical Specification (RITS) for water demand requirements. The standard values used are listed as follows:

- 200 litres per person per day was used (RITS 5.2.4.2).
- Infiltration Allowance of 2250 litres per hectare per day (RITS 5.2.4.2)



- Surface water ingress allowance of 16,500 litres per hectare per day (RITS 5.2.4.2)
- 45 people per hectare recommended for Industrial Zoning (RITS Table 5.3) and 30 people per hectare used for Commercial Zoning (RITS Table 5.3) included for comparison purposes.
- Peaking factor of 2.7 used as recommended by the RITS.
- Assumes 12% of the area to be developed will be used for roads/accessways.

Using the above assumptions and parameters **Table 3** below summarised the total flows. As with water, the commercial volumes are provided for comparison purposes. Please refer to **Appendix A** for the calculation spreadsheet.

|                     | Designed for (per<br>ha) | ADDWF     | PDDWF     | PWWF       |
|---------------------|--------------------------|-----------|-----------|------------|
| Industrial land use | 45 people                | 4.24 l/s. | 8.99 l/s. | 15.19 l/s. |
| Commercial land use | 30 people                | 3.10 l/s. | 6.49 l/s. | 12.70 l/s. |

#### Table 3: Wastewater demand calculations

The calculated flows are conservative and likely over-estimated with the amount of infiltration and ingress allowed into the system given the system is new and unlikely to leak at the same rate as older pipes (in particular earthenware pipes). In addition, the ratio between the amount of pipes and land area serviced varies greatly between the proposed industrial use and residential land which the RITS assumptions for infiltration are based on. Residential land generally has a much higher density of connections compared with other land uses driven by considerably smaller lots. For this reason, the ingress and infiltration rates have been reduced on similar projects such as that applied to the Ruakura Superhub project in Hamilton City. These options will be discussed with PDP and Matamata Piako District Council, as part of the detailed design, to potentially reduce the flows as calculated above.

### 5.3 Proposed wastewater network options

A number of options have been considered to provide for the treatment and disposal of wastewater. These are summarised below, along with the preferred approach.

#### 5.3.1 Option 1 – Upgrade Existing Network and WWTP

This option would involve providing a localised network with a centralised pump station, within the plan change site, which conveys the wastewater into the WWTP located to the north of the development.

PDP is currently working with Council to look at operational changes and upgrades to the WWTP that may increase capacity, within its consented discharge. Until such time as that work has been concluded, the following statements apply:

- Other developments proposed in the currently zoned land will utilise any residual spare capacity in the Matamata wastewater piped network and WWTP.
- As this development is not currently zoned, it will assume lower priority to land that is currently zoned for residential, future residential or other (employment development) within Matamata.

For these reasons, this option may only be feasible if the developer finances the conveyance of wastewater to the Matamata wastewater treatment plant and contributes to a "modular" partial upgrade that would accommodate the additional flow and load produced. This would, in our opinion, be the better long-term solution. Being a modular system also enables the system to be upgraded in the future as the development grows. Furthermore, the and the modular approach would not preclude other developers (not zoned) in the area from also adding modules to accommodate their developments.

Under this option, **Figure 9** set out the proposed location of the wastewater pump station and the indicative alignment of the rising main which will connect into the WWTP. Coordination with Council (as the owner of



the land to the north of the site) will be required for the approval and installation of the rising main and associated easement framework. This plan is also provided in **Appendix C**. Should that alignment be unable to be achieved, an alternative alignment is available along SH24 and through Lot 3 DP 313622, which has been purchased by Calcutta Farms Ltd. This alternative alignment is annotated into **Figure 9**.



Figure 9: Wastewater Option 1

### 5.3.2 Option 2 – Centralised Treatment Plant

Option 2 consists of a centralised wastewater treatment facility within the proposed plan change site that solely services the site. This option allows the development to work independently form the public system so as not to require upgrades to the reticulation or the WWTP.

Council have expressed concern with an onsite treatment system due to its proximity to the existing wastewater treatment plant. For this reason and due to risks obtaining the required regional council consent, long term operating costs and compliance risk this option has been abandoned.

#### 5.3.3 Option 3 – On-site Wastewater Disposal

Option 3 is to require individual on-site wastewater treatment and disposal systems for each individual lot. These systems would be designed and constructed as part of the development of the individual lot and would take into consideration the anticipated flows volumes and makeup of waste, based on the individual users needs, as well as the consented limits for discharge of treated effluent.

A likely that some sites may require discharge consent from Waikato Regional Council if their discharge is unable to comply with the permitted activity standards. It is also anticipated that the discharge limits will be stringent requiring a tertiary treatment system that treat wastewater to a standard that can be used for irrigation or safely discharged to ground.



Whilst this is not the preferred option, the site conditions do not preclude this option. Furthermore, this approach has been used for industrial land uses previously. The Western Precinct at Titanium Park being one such example.

#### 5.3.4 Preferred Option

Option 1 is preferred as it follows the traditional wastewater model with Council ownership and maintenance of all related infrastructure. This option presents the lowest risk both for consenting and long-term operation, however, does present a challenge in the short term as an upgrade or provision of additional capacity is required in the WWTP.

### 5.4 Design requirements

Detailed wastewater design, if Option 1 applies, will be required for each stage in the development. At the first stage, the design will need to address:

- A new wastewater pump station and rising main that connects the site to the WWTP.
- Coordination with MPDC regarding connection and discharge into the WWTP, including required upgrades or expansion to accommodate the additional flows.
- A gravity reticulation network that can be extended for future stages.

Subsequent stages will connect to the above reticulation and will require an extension of the gravity reticulation.

# 5.5 Reticulation

The Matamata-Piako District Council Development Manual sets out design and construction standards for wastewater, and the design will also be done in accordance with the Waikato Regional Infrastructure Technical Specification (RITS).

The proposed wastewater network will most likely consist of DN150 PVC mains with 150mm connections to each site. The network will be located in the road corridor with manholes situated at appropriate locations throughout, based on RITS standards.



# 6. Stormwater

# 6.1 Catchment description

The project's catchment lays within the flat floodplain area east of Matamata and is located within the Mangawhero Stream's general catchment. There are no stream formations within the plan change footprint and the runoff flows in the form of sheet flow during rainfall events. Some flow path patterns may occur during high rainfall events, but currently there is not any form of waterway. The general overland flow arrangement relative to the site is shown in **Figure 10**.

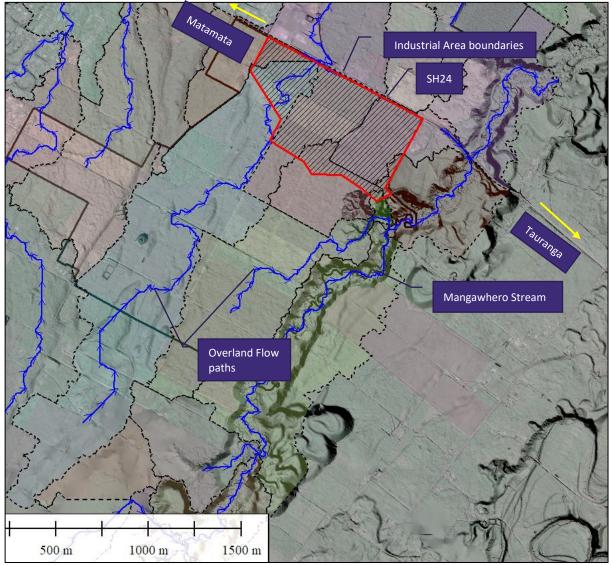



Figure 10: General overland flow network relative to the site

In its current situation, the majority of the surface runoff discharges towards and into Tauranga Road, it has a flat grade, varying from 0.1 to 0.5%, towards the North. The eastern part of the area is discharges into Mangawhero Stream as a flow path has been formed alongside the southern side of Tauranga Road. A small part of the area on the south-eastern boundary currently drains into a gully that is part of the Mangawhero Stream network.

In its current state, the land use of the site is agricultural/farming. Impervious areas are limited consisting mostly of the internal gravel road network and a few farming structures, mostly barns. The current imperviousness of the catchment has been assessed to 5%. The predominant soils are sands, sandy silts, with a topsoil layer that consists of dark brown sandy silts with high concentration of organics, typical for agricultural lands.



# 6.2 Stormwater design philosophy

The proposed stormwater management layout has been designed to comply with the RITS and the WRC stormwater management guidelines. A combination of treatment, conveyance, and attenuation devices are proposed that promote stormwater treatment chain approach, positive aesthetics output, and the spatial requirements that industrial developments usually pose. The proposed stormwater management Layout (see **Figure 11** below) is presented in **Appendix E**.

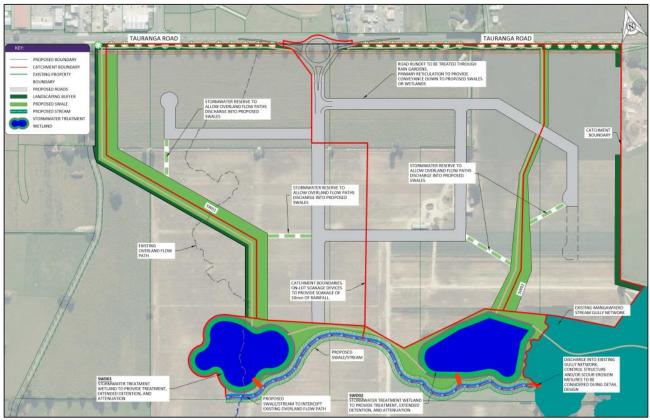



Figure 11: Proposed Stormwater Management layout

The proposed stormwater management philosophy is presented in the form of the following diagram:



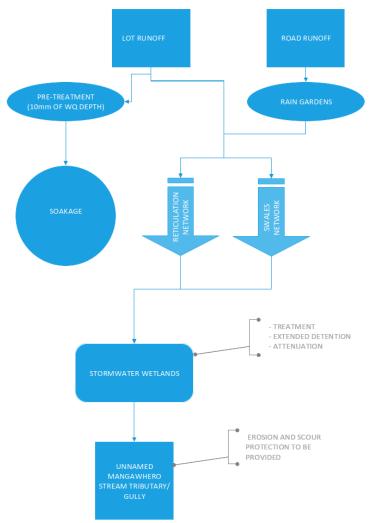



Figure 11a: Diagram of Proposed Stormwater Management layout

#### 6.2.1 Stormwater treatment

The stormwater treatment philosophy is briefly presented in the following bullet points:

- Road surface to be treated via raingardens. The treated runoff will then be collected via a primary reticulation and discharged into the wetlands or the proposed swales.
- Lot surface to be treated initially through soakage. On-Lot soakage devices will be sized to soak 1/3rd of the WQ rainfall depth (10mm of 30mm WQ event). Soakage devices will be underground and could be located under parking or green areas. For a typical site it is anticipated that the soakage device footprint will take up approximately 1.5% of the lot area.
- The remaining 20mm of the WQ rainfall will be collected through reticulation and discharged into the proposed swales and from there into the proposed wetlands. The proposed wetlands will provide water quality treatment, extended detention, and attenuation.

The proposed layout provides a treatment train that will enhance treatment efficiency while functions as amenity features (swales, wetlands, rain gardens). It also includes groundwater recharge without the need for large soakage devices that require a large footprint.

Finally, the proposed layout provides a new discharge point to the Mangawhero Stream gully network. Currently flows from the catchment discharge/overtop onto Tauranga Road leading to a risk of flooding. The proposed layout provides an alternative discharge point, south of the plan change site, so as to provide stormwater/flood protection to the existing state highway.



#### 6.2.2 Drainage

A reticulation system under the proposed road network will provide conveyance of the collected runoff and, along with the proposed swales will be part of the primary system.

The road reserve will function as a secondary system to allow for overland flow during events higher than the 10-year ARI. Additional stormwater reserves are proposed to ensure continuity of the overland flow path network to ensure that no properties are at risk of flooding.

#### 6.2.3 Attenuation

Attenuation of the flows to pre-development levels will be provided through the proposed stormwater wetlands, and the swale/stream network. The wetlands will be sized to also provide extended detention to prevent erosion at the downstream receiving system (Mangawhero Stream gully system).

#### 6.2.4 Swales

The proposed swales will function as conveyance and pre-treatment devices. It is proposed that the swales will be planted so that they can provide higher biological uptake while also providing amenity and aesthetics. Furthermore, once the vegetation is established, the maintenance needs will be limited when compared to grassed swales which require regular mowing.

The swales will emulate stream function and will consist of a main channel, and floodplain areas. The alignment of the main channel will be curved to provide irregularities and sinuosity. The swales' flood plain will also contribute to flow attenuation allowing water to back up.

#### 6.2.5 Alternative options

Other options considered for the stormwater layout were:

- Full on-lot soakage and a centralised treatment/soakage system for the road runoff. This system would require large portions of the industrial lots to accommodate soakage devices which would lead to high cost and would restrict development options within the lots. It would also not cover the attenuation requirements, leading to the need for additional areas for attenuation ponds. WRC generally do not support the use of systems that rely fully on onsite solutions as they are concerned with the long-term operation of these systems. Consent compliance is difficult to monitor and enforce unless Council can undertake regular inspections of the system to ensure they are fit for purpose.
- Centralised stormwater treatment device(s) (wetland) and a primary reticulation network. This option would require larger treatment device(s) and the designation of more stormwater reserves to ensure that during rainfall events higher than the 10-year ARI, the overland flows would be safely guided into the device(s). Additionally, the solution would not benefit ground water recharge.

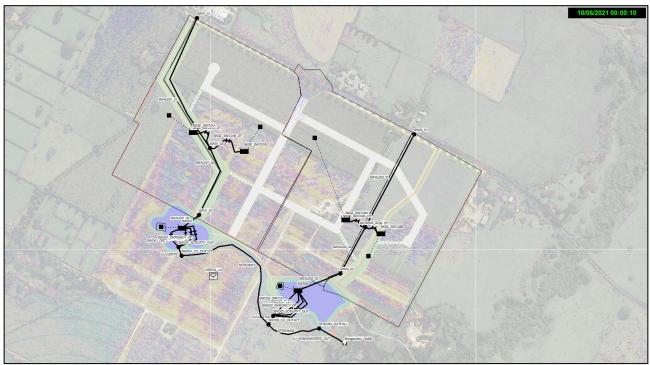
The above reasons, the proposed stormwater solution is a well-balanced approach that maximises benefits for both the development and the environment.

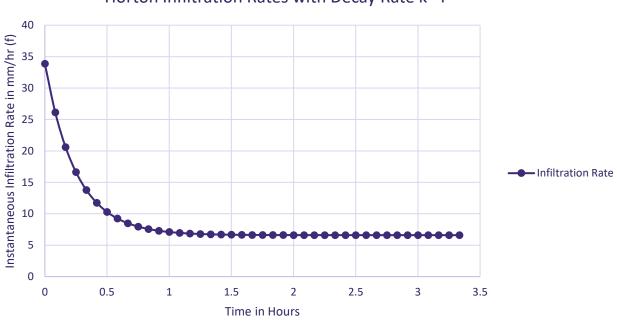


# 6.3 High level modelling results

#### 6.3.1 Drainage and hydrology

Stormwater hydrology and hydraulics were modelled using EPA SWMM-5 (SWMM). **Figure 12** presents the high-level model layout that was built for the needs of this report. Refer to **Appendix J** for modelling output. SWMM develops sub-catchment runoff flows, based on imported rainfall patterns (synthetic design storms or continuous rainfall data), soil infiltration characteristics, and soil cover complexes. SWMM was used to route the stormwater flows, using the Dynamic Wave Method (application of the full Saint-Venant Equations). This allows hydraulic losses in manholes, bends or junctions to be accounted for and ponds with complex outlet structures to be modelled.





Figure 12: High-Level SWMM model of the proposed Stormwater Management Plan.

24-hour duration storms have been modelled, using rainfall intensities from High Intensity Rainfall System (HIRDS). The 24-hour design storms modelled were Water Quality (1/3<sup>rd</sup> of the 2-year/ 24hour storm, 10-year, and 100-year ARI storm events. All design storm events were adjusted to account for a 2.3°C temperature increase due to climate change. An additional 100-year ARI design storm adjusted for a 3.8oC temperature increase was also used to verify freeboards and possible overtopping for the RCP8.5 scenario, following peer review and WRC recommendations.

Infiltration was estimated based on typical hydraulic characteristics of typical soil texture classes, taken from the EPA SWMM-5 Manual and Rawles, W.J. et al., Journal of Hydraulic Engineering, 109:1316. Soil textures from the site were derived from the S-Map, and sieving laboratory tests conducted by WSP (**Appendix F**).

The infiltration method applied was the Horton's Infiltration Equation. Horton's Equation uses infiltration rates for typical soil types in the sub-catchment. This method uses an initial infiltration rate, adjusted for an appropriate antecedent moisture condition, and decreases it exponentially to a final infiltration rate for saturated soil conditions. The rate that the infiltration is decreased by is determined by a decay rate. Initial infiltration rate of 33.87mm/hr and final infiltration rate of 6.6mm/hr respectively were used, along with a decay rate of 4.0. The infiltration rate reaches saturated hydraulic conductivity within the first 2 hours, long before the peak of 24-hour design events. **Figure 13** below shows a plot of infiltration versus time, using Horton's Equation with the inputs that have been applied.





# Horton Infiltration Rates with Decay Rate k=4

#### Figure 13: Horton's equation plot

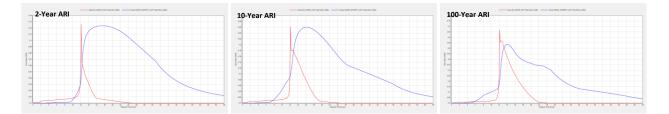
Depression storage was input at 5mm for pervious areas and 2mm for impervious areas.

Peak flow estimates were calculated for 2year, 10year, 50year and 100year, 24h storm events. Design rainfall curves were introduced for existing conditions and future, climate change adjusted conditions. The curves derived from HIRDS v.4 information and WRC TR2020/06 (Waikato Stormwater Runoff Modelling Guide).

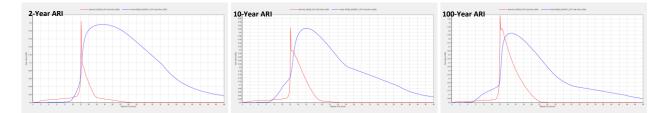
#### 6.3.2 Soakage

The on-lot soakage devices were sized according to MPDC Soakage Design Procedures and Guidelines, and the RITS, but for a target volume of 1/3rd of the Water Quality Volume. All devices were inserted in the SWMM model to review/verify their performance, and Green & Ampt equation was used to model them. **Appendix I** provides an example of on-lot sizing calculation. The on-lot soakage trenches were modelled in groups, depending on the sub-catchment that they were servicing. A soakage rate of 90mm/h was used for all soakage devices. This rate corresponds to the average rate calculated by CMW during the onsite soakage tests, apply a factor of 0.5 according to RITS and WRC Stormwater Guidelines. Refer to **Appendix G**.

Raingardens have not been modelled in this high-level model. During detail design, soakage will also be also applied for the raingardens that will be included in the SWMM model, as LID controls in the road subcatchments' properties. For the raingardens, a more conservative soakage rate will be used to comply with WRC guidelines (0.75m/day).


#### 6.3.3 Reticulation

Stormwater reticulation has not been designed for the needs of this high-level model. During detail design the reticulation network will be designed in 12D and imported in EPA SWMM for modelling and sizing. The design will be based on RITS. Entry and exit loss coefficients on every pipe section will be applied. Overland flow paths will also be included in the model to allow for depth and velocity checking during higher design events (50-year, 100-year).




#### 6.3.4 Flood Control

Flood control will be applied though attenuation of the overall flows in the proposed wetlands and swales. Outlet structures will be sized to allow the discharges to match pre-development flows for the 2-year and 10-year ARI design rainfalls, and the 80% of the pre-development flows for the 100-year ARI event. The outlet structures have been preliminary sized in the high-level SWMM model and provide evidence that the proposed areas and volume for the wetlands and swale network can provide sufficient storage to achieve the attenuation goals. **Figure 14** and **Figure 15** below demonstrate the attenuation provided by the proposed layout.



**Figure 14:** Attenuation Performance graphs of SWD01 discharge during the design 2-year, 10-year, and 100 year ARI rainfall. The red line represents pre-development flow, and the blue line represents post-development attenuated flow.



**Figure 15:** Attenuation Performance graphs of SWD02 discharge during the design 2-year, 10-year, and 100-year ARI rainfall. The red line represents pre-development flow, and the blue line represents post-development attenuated flow.

The discharge into the existing Mangawhero Stream gully system will be by way of new stream that will convey the attenuated flows from the treatment devices and release it into the gully network through a control discharge device. The proposed new stream will also divert the overland flows that enter the site from the south under the existing conditions. Erosion and scour control measures will be considered and designed during detail design the ensure that the receiving gully system will be protected against the discharges.

The proposed stream is part of a wider stream network currently modelled and designed under a stormwater Masterplan that is being developed for the entire Calcutta Farms properties catchment. The masterplan considers the same design principals regarding stormwater treatment, attenuation, flood control and ground water discharge. The stormwater masterplan will inform the detailed design of the proposed Industrial Area, and vice-versa. Once developed, the overall masterplan will provide an extension of the Mangawhero Stream gully network that will accommodate off-line stormwater treatment and attenuation wetlands, as well as a network of amenities for the future residential areas.

#### 6.3.5 Stormwater conclusions

The design of the proposed stormwater management system is in general conformance with the Waikato Regional RITS, the Waikato Stormwater Guidelines and any future consent conditions.

Currently only high-level design and modelling is available, it is therefore expected that some changes may occur during the detail design of the development. The changes will comply to the same standards that the current design is based on and will be refined to conform with conditions of any future consents.



Based on the design described in this report, the proposed stormwater management system will achieve the following:

- All of the development's stormwater runoff will be treated by at least one treatment device that meets RITS standards.
- During intermediate storm events, soakage devices are proposed that will promote groundwater recharge through infiltration.
- The overall approach is intended to maximise the stormwater management benefits, within the constraints of the existing site, while minimizing impacts to the off-site environment.

#### 6.3.6 Additional Stormwater Information/Assessment

In response to the peer review of this report, undertaken by CKL, two additional appendices have been added to this report. **Appendix L** is a memo that provides a high-level catchment analysis of the Mangawhero Stream catchment, to assess the effects on the Mangawhero Stream from the plan change. **Appendix K** is a memo that specifically addresses four points of the peer review and provides updated hydrological and hydraulic calculations and an updated assessment of the overland flow path on the south-western boundary of the development. Refer to those two appendices for further information.



# 7. Utility services

# 7.1 **Power supply**

The majority of the existing properties along Tauranga Road are serviced by overhead powerlines. These overhead power lines are situated on within the site boundary (approximately 14.5m back from the site boundary with the road). Vero's, on behalf of Calcutta, are investigating the option of undergrounding these lines, however, for the purpose of the plan change it should be assumed that they will be retained and will be subject to an easement in gross in favour of PowerCo. Their alignment is such that they are expected to be located within a future reserve that runs parallel with Tauranga Road.

PowerCo/Northpower has been engaged to verify the demand of the existing reticulation and to provide guidance on the serviceability of the development. PowerCo has confirmed that the development can be connected from the Taihoa Feeder (see **Figure 16** below for location). Please refer to **Appendix D** for the full email setting out the serviceability from PowerCo.

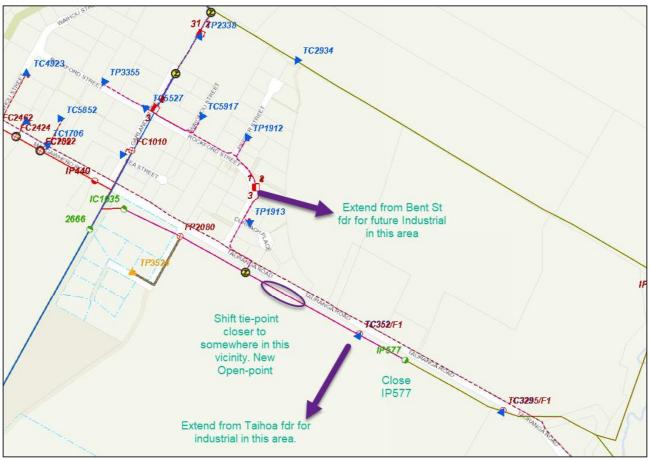



Figure 16: PowerCo reticulation alignment to service Industrial Zone

All power reticulation will be carried out in accordance with the New Zealand Standard – Land Development and Subdivision Infrastructure NZS: 4404:2010 and PowerCo's requirements.



# 7.2 Telecommunications

Ultrafast Fibre has been engaged to verify the demand and serviceability of the development. They have confirmed that UFF telecommunications network is achievable for the development. Please refer to **Appendix D** for the letter of serviceability from Ultrafast Fibre.

All telecommunications will be carried out in accordance with the New Zealand Standard – Land Development and Subdivision Infrastructure NZS: 4404:2010 and suppliers' requirements.



# 8. Conclusion and recommendations

The conceptual infrastructure design for the plan change, as set out in this reporting, has been carried out in accordance with the Waikato Regional Infrastructure Technical Specifications and the Matamata Piako District Council Development Manual and taking into consideration the network constraints and opportunities.

The site is considered to be well located for the proposed activity, as it can be serviced by roading and stormwater relatively easily. There are constraints around supply of water and disposal of wastewater, however viable options exist to address these constraint as detailed within this report. We expect to work through these capacity issues further as the plan change progresses and as further information becomes available from Council in relation to the WWTP.

| Infrastructure           | Preferred Option                                                                                                                                                                                                                                                                                                                                                                 | Next Steps                                                                                                                                                                                                                    |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Water Supply             | <ul> <li>Utilise the existing borehole on site<br/>for supply of water.</li> <li>Construct onsite water treatment<br/>plant.</li> <li>Provide potable water network from<br/>treatment plant through the<br/>development.</li> <li>Provide firefighting tank and pump<br/>system.</li> </ul>                                                                                     | <ul> <li>Post approval of the plan change -<br/>close out investigation on the<br/>water quality and progress and<br/>engage specialist for treatment<br/>plant design.</li> <li>Discuss all options with Council.</li> </ul> |
| Wastewater Supply        | <ul> <li>Provide local network to pump<br/>station to service lots.</li> <li>Provide centralised pump station<br/>and rising main to WWTP.</li> <li>Upgrade existing MPDC WWTP.</li> </ul>                                                                                                                                                                                       | <ul> <li>Finalise extent of proposed PDP capacity and treatment upgrades.</li> <li>Lock in parameters around the upgrade and discuss timing of these upgrades in relation to the development program.</li> </ul>              |
| Stormwater<br>Management | <ul> <li>Use a combination of soakage,<br/>treatment, conveyance, and<br/>attenuation devices with a new<br/>discharge point to the Mangawhero<br/>Stream gully network</li> <li>Soakage devices proposed to<br/>promote groundwater recharge.</li> <li>All the runoff will be treated by at<br/>least one treatment device designed<br/>in accordance with the RITS.</li> </ul> | <ul> <li>Advance to preliminary design<br/>stage and discuss with Regional<br/>Council.</li> </ul>                                                                                                                            |

These preferred options are summarised below in Table 3.

 Table 3: Infrastructure Matrix

Based on this report we consider that the proposed future industrial development outcome can be accommodated and designed without generating adverse effects on the existing infrastructure and stormwater receiving environment.



**Appendix A – Water and wastewater demand calculations** 



| roject :                                   | Calcutta Development         |                                     |                         |                                   |                           |                    |                                        |                 |   |
|--------------------------------------------|------------------------------|-------------------------------------|-------------------------|-----------------------------------|---------------------------|--------------------|----------------------------------------|-----------------|---|
| lient :                                    | Veros                        |                                     |                         |                                   |                           |                    |                                        |                 |   |
| escription :                               | Estimated Future Flow        | ted Future Flow/Demand calculations |                         |                                   |                           |                    |                                        |                 |   |
| tandard Values used                        |                              |                                     |                         |                                   |                           |                    |                                        |                 |   |
| esidential - Water Con                     | umption                      |                                     | 260                     | litres per person                 | per day                   | RITS 6.2.3         |                                        |                 |   |
| eneral Residential/Ind                     | ustrial - Population Dens    | ity/Equivalent                      | 45                      | persons per hect                  | tare                      | RITS TABLE 5.3     |                                        |                 | 1 |
| eneral Residential                         |                              |                                     | 2.7                     | persons per HC                    | OUSEHOLD (RITS Table 5-7) |                    |                                        |                 | 1 |
| Commercial - Population Density/Equivalent |                              |                                     | 30                      | persons per hect                  | tare                      | RITS TABLE 5.3     |                                        |                 |   |
|                                            |                              |                                     | Using Lot Occ           | upancy Method                     |                           |                    |                                        |                 | 1 |
| Development/Lot                            | Catchment Gross<br>Area (Ha) | Zone                                | Population<br>(persons) | Average<br>Consumption<br>(I/day) | (Peaking Factor)          | Peak Flow<br>(I/s) | Average<br>Daily<br>Demand<br>(m3/day) | Comments        |   |
| Employment Zone                            | 32.50                        | Commercial                          | 975                     | 253,500                           | 5                         | 14.67              | 253.5                                  | LW3 FF required |   |
| Employment Zone                            | 32.50                        | Industrial                          | 1463                    | 380,250                           | 5                         | 22.01              | 380.3                                  | LW3 FF required |   |
| otal Average Daily Der                     | nand                         |                                     |                         |                                   |                           |                    |                                        |                 |   |
|                                            |                              |                                     |                         |                                   |                           |                    |                                        |                 |   |

Notes

Employment Zone: based on 32.3ha at 88% developed area (12% roads)

C:\12dsynergy\data\10.7.120.14\146930 - Calcutta Farms\_5070\04 Infrastructure\[Calcutta Farm Calcs.xlsx]RITS Water Demand

121399

| Project :            | Calcutta Development                      | Date : | 17-Oct-2021 |
|----------------------|-------------------------------------------|--------|-------------|
| Client :             | Veros                                     |        | -           |
| Description :        | Estimated Future Flow/Demand calculations |        |             |
|                      |                                           |        |             |
| Standard Values used |                                           |        |             |

| 200   | litres per person per day              |
|-------|----------------------------------------|
| 2250  | litres per hectare per day             |
| 16500 | litres per hectare per day             |
| 45    | persons per hectare                    |
| 2.7   | persons per HOUSEHOLD (RITS Table 5-7) |
| 30    | persons per hectare                    |
|       | 2250<br>16500<br>45<br>2.7             |

| Using Lot Occupancy Method   |                     |       |                    |                         |                        |                               |                      |             |                  |                  |                 |         |
|------------------------------|---------------------|-------|--------------------|-------------------------|------------------------|-------------------------------|----------------------|-------------|------------------|------------------|-----------------|---------|
| Catchment/Lot                | Catchment Area (Ha) | Units | Zone (RES,IND,COM) | Population<br>(persons) | Consumption<br>(I/day) | P/A Ratio<br>(Peaking Factor) | Infiltration (I/day) | SWI (I/day) | ADDWF<br>(l/sec) | PDDWF<br>(l/sec) | PWWF<br>(l/sec) | Comment |
|                              |                     |       |                    |                         |                        |                               |                      |             |                  |                  |                 |         |
| Employment Zone (Commercial) | 32.50               | NA    | СОМ                | 975                     | 195,000                | 2.5                           | 73,125               | 536,250     | 3.10             | 6.49             | 12.70           |         |
| Employment Zone (Industrial) | 32.50               | NA    | IND                | 1465                    | 293,000                | 2.4                           | 73,125               | 536,250     | 4.24             | 8.99             | 15.19           |         |

Summary of Flows

Notes

Total Flow

C:\12dsynergy\data\10.7.120.14\146930 - Calcutta Farms\_5070\04 Infrastructure\[Calcutta Farm Calcs.xlsx]RITS Water Demand

| 021 |   |                              |
|-----|---|------------------------------|
|     |   | RITS 5.2.4.2<br>RITS 5.2.4.2 |
|     |   | RITS TABLE 5.3               |
|     |   | RITS TABLE 5.3               |
|     |   |                              |
| its |   |                              |
|     |   |                              |
|     |   | 7                            |
|     | [ | -                            |
|     |   |                              |
|     |   |                              |
|     |   |                              |

Appendix B – Hydrological advice on water supply prepared by WGA





Calcutta Farms Ltd

# Hydrogeological Advice on Water Supply

| ٠ | ٠ | • | • • | • | • | • | • • |   | ٠ | ٠ |   |   |    |    |    | ٠   | •  |     | • • | •  |    | ٠  |        | •          | •   | • | • • |    |    |          | ٠ |   | ٠  | • | •   | • •      | • • | • • | •   | ٠  |    |    |        | • | • | <br>  |   |
|---|---|---|-----|---|---|---|-----|---|---|---|---|---|----|----|----|-----|----|-----|-----|----|----|----|--------|------------|-----|---|-----|----|----|----------|---|---|----|---|-----|----------|-----|-----|-----|----|----|----|--------|---|---|-------|---|
| • |   |   |     |   |   | • |     | ٠ |   |   | ٠ | • |    | ٠  |    |     |    |     |     |    |    |    |        |            | • • | • |     |    |    |          | ٠ | • | •  |   | •   |          |     |     | •   |    |    | •  |        |   | • |       |   |
| • | • |   |     |   |   |   |     |   |   |   |   | ( | 2  | 1  | 2  | ſ   | М  |     | N   | 11 | ר  | V  | V      | Δ          | . 7 | Г | F   |    | Ç. | -        | Δ | ς |    | 5 | F   | . (      | 2   | q   | t I | \/ | F  |    | N      | • |   |       |   |
|   |   |   |     |   |   |   |     |   |   |   |   |   |    |    |    |     |    |     |     |    |    |    |        |            |     |   |     |    |    |          |   |   |    |   |     |          |     |     |     |    |    |    |        |   |   |       |   |
| • | • |   |     |   |   | • |     | ٠ | • | ٠ |   |   |    |    |    |     |    |     |     | •  |    |    |        |            |     | • |     |    |    | ٠        | ٠ |   | •  | • | •   | • •      |     | •   |     |    |    |    | •      |   |   |       |   |
| • | • |   | • • |   |   |   |     |   |   |   |   | • |    |    |    |     |    |     |     | •  |    |    |        |            |     |   |     |    |    |          |   | • | •  | • | •   | • •      |     |     |     |    | •  |    |        |   |   |       |   |
| • | • | • | ••• | • | • | • | • • |   | * | • | • | ſ | D  | r. | ň  | iz. | 3  | -1  | E 1 | N٠ | ۲  |    | ٠١     | ٨          | 11  |   | 1   | ١. | ი  | 1        | 1 | C | 27 | n | 5   | • •      |     | • • | •   |    | •  | •  | •      |   |   | <br>• |   |
| • | • |   | • • | • |   | • | • • | ٠ |   |   |   | I |    |    | U  | յե  | 30 | -   |     | N  | IC | ). |        | ٧V         | / \ | - | 1/  | ٦. | 2  | ł        |   | • | 21 | U | U   | • •      |     | • • | •   |    |    | ٠  | ٠      |   |   |       |   |
| • | • |   | ••• | • | • | • | • • | * | ٠ |   | • | r | -  |    | •  |     | ĸ  | 1.2 | • • |    | ١X | 1  | $\sim$ | × /        | 1   | n |     | 2  | 17 | <b>N</b> | h | - | •  |   | s r | <b>.</b> |     | 1   | 1   | ~  | •  | ٦. | $\sim$ | n |   | •     |   |
| • | • | • | • • | ٠ | • | • | • • |   |   | ٠ | • | I | J  | Ŀ  | )( | ;   | Þ  | 1(  | J.  |    | ٧ı | ٧ı | Ŀ      | 3 <i>1</i> | ٩,  | 2 |     |    | 18 | 11       | J | ວ | ٠  | F | ξĮ  |          | -   |     | I.  | כ  | -( | J  | U      | υ |   |       |   |
| ٠ | ٠ | • | • • | • | • | • | • • |   | ٠ | ٠ | ٠ | 1 |    | ٠  | •  | ٠   | ۰. |     | • • | •  | ٠  | ٠  |        | •          |     | • | • • |    |    | ٠        | ٠ | ٠ | ٠  | ٠ | •   | • •      |     | •   | •   |    | •  | ٠  | ٠      |   |   |       |   |
| ٠ | • |   | ••• |   |   | • | • • | ٠ | ٠ | ٠ | ٠ | ł | イ  | e  | ١؛ | ŀ   | ٠ł | З   |     | •  |    | ٠  |        | •          |     | • | • • |    |    | ٠        | ٠ | ٠ | ٠  | • | •   | • •      |     | •   | •   | •  | ٠  | ٠  | ٠      | • |   |       |   |
| • | • |   | • • |   | • | • | • • | ٠ |   |   |   |   |    |    |    |     | •  |     | • • | •  |    | ٠  |        | •          |     | • | • • |    |    | ٠        | ٠ | • | •  | • | •   | • •      |     | • • |     | ٠  |    | ٠  | •      |   | • |       |   |
| • | • | • |     | ٠ | • | • | • • | * | ٠ | ٠ | ٠ |   | 1. | 7  | •  | X   | r  | n.  | 16  | rد | m  | h  | ٦.     | rد         | •   | 2 | ጉ   | 13 | )^ | ŀ        | * | • | •  | • | •   | • •      | •   | • • | •   | •  | •  | •  | ٠      | • | • | <br>• |   |
| • | • | • | • • | ٠ | • | • | • • | ٠ | ٠ | ٠ |   | • | •  |    |    |     | ų. | , v |     | 1  |    | Ļ  | ,c     | <i>,</i>   | . 1 | 4 | ,Ч  | 4  | •  |          | ٠ | • | •  | • | •   | • •      |     | • • | •   | •  | •  | •  | •      | • | • | <br>• | • |
| • | • |   | • • |   |   | • |     |   |   | • | • |   |    |    | •  | ٠   | •  |     | • • |    |    |    |        |            |     | • |     |    |    | •        | ٠ | • | •  | • | •   | • •      |     |     |     |    |    | •  | •      |   |   |       | • |



. . . . . . . . . . . . .

#### **Revision History**

i

| Rev | Date        | Issue           | Originator | Checker | Approver |
|-----|-------------|-----------------|------------|---------|----------|
| Α   | 03 Nov 2021 | Draft to Client | СМН        | СНО     | СНО      |
| В   | 17 Nov 2021 | Final           | СМН        | СНО     | СНО      |
|     |             |                 |            |         |          |
|     |             |                 |            |         |          |

# CONTENTS

| 1 Intr | oductior  | ۹                                          | 1 |
|--------|-----------|--------------------------------------------|---|
| 1.1    | Introduc  | tion                                       | 1 |
| 1.2    | Scope c   | of Services                                | 1 |
| 1.3    | Conside   | erations for a Potable Groundwater Supply  | 1 |
|        |           | scription                                  |   |
| 1.5    | Water U   | Jse and Requirements                       | 3 |
| 1.6    | Current   | Consents                                   | 3 |
| 1.7    | Bore Co   | onstruction                                | 3 |
| 1.8    | Site Visi | it                                         | 4 |
| 2 Pot  | able Wa   | ter Supply                                 | 7 |
| 2.1    | Water A   | vailability                                | 7 |
|        | 2.1.1     | Current Usage                              | 7 |
|        | 2.1.2     | Water Level Monitoring                     | 7 |
| 2.2    | Water C   | Quality                                    | 8 |
|        | 2.2.1     | Laboratory Results                         | 8 |
| 2.3    | Water T   | reatment 1                                 | 0 |
| 3 Wa   | ter Secu  | rity1                                      | 2 |
| 3.1    | Potentia  | al Sources of Contamination1               | 2 |
| 3.2    | Hydroge   | eological Review1                          | 2 |
|        | 3.2.1     | Regional Geology and Hydrogeology 1        | 2 |
|        | 3.2.2     | Local Hydrogeological Setting 1            |   |
|        | 3.2.3     | Aquifer Flow Gradients 1                   |   |
|        | 3.2.4     | Surface Water and Groundwater Interaction1 | 5 |
| 3.3    | Bore Inf  | rastructure Security 1                     | 5 |
| 4 Coi  | nclusion  | s and Recommendations 1                    | 6 |
| 4.1    | Conclus   | sions1                                     | 6 |
| 4.2    | Recomr    | nendations 1                               | 6 |
| 5 Ref  | erences   |                                            | 7 |

#### Figures

ii

| Figure 1: Site Location Map                                                                  | 2  |
|----------------------------------------------------------------------------------------------|----|
| Figure 2: Java Bore (72_6680) Headworks.                                                     | 5  |
| Figure 3: Sampling Point on Java Bore (72_6680) Showing Iron Staining                        |    |
| Figure 4: On site Monitoring Bores Near the Java Bore (72_6619 and 72_6795)                  | 6  |
| Figure 5: Groundwater Levels Recorded at WRC Monitoring Bore 64_831                          | 8  |
| Figure 6: Simplified Diagram of Greensand filtration of Groundwater (MOH 2007).              | 10 |
| Figure 7: Groundwater Levels in the Overlying Aquifers During Pumping in Java bore (72_6680) | 15 |

#### Tables

| Table 1. Current Consents to Take Water.                        | 3 |
|-----------------------------------------------------------------|---|
| Table 2: Bore Construction (Calcutta Limited bores).            | 4 |
| Table 3: Java Bore (72_6680) Current Water Usage                | 7 |
| Table 4: Results of Laboratory Analysis for Java Bore (72_6680) | 9 |

#### Appendices

Appendix A Current Consents

Appendix B Laboratory Analysis Results

Appendix C Bore Logs

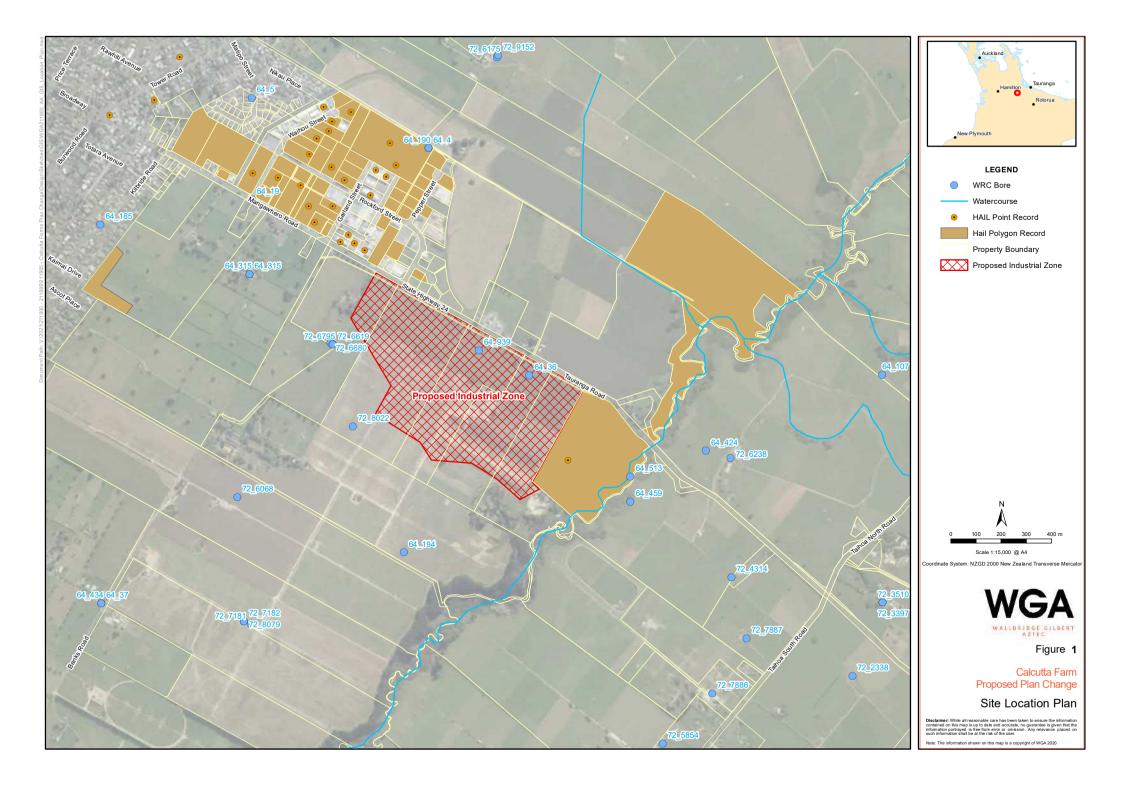
# INTRODUCTION

#### 1.1 INTRODUCTION

Calcutta Farms Limited (Calcutta) is seeking a hydrogeological assessment of the available water sources to support a land development which includes rezoning approximately 41 ha from rural zone to industrial zone to the south of Matamata (Figure 1). Matamata Piako District Council has identified that they have limited to no spare water capacity to cater for the demand likely to eventuate from the zone change. They are accordingly looking for Calcutta to demonstrate and provide a suitable water resource to service the development through either a new water take or a reallocation of some or all of one of Calcutta's existing water takes. There are three current Waikato Regional Council water permits to take groundwater associated with the property. One of these permits is for a small water take for dairy shed wash down and milk cooling. The other two, provide larger water volumes for irrigation and dust suppression and are considered potential options for reallocation of water with a particular focus on the Java bore (AUTH130710.01.01) which has a consented daily take of 7,200 m<sup>3</sup>/day from bore numbered 72\_6680.

#### 1.2 SCOPE OF SERVICES

WGA was retained to provide support by undertaking the following tasks:


- Site visit to confirm site layout and take a water quality sample.
- Review the relevant documents, groundwater level data, pumping test data if available and water quality results to undertake an assessment of the feasibility of using the existing bore for potable water supply.
- Prepare a report documenting the findings of our feasibility assessment and provide recommendations for next steps.

#### 1.3 CONSIDERATIONS FOR A POTABLE GROUNDWATER SUPPLY.

When considering a water source for potable supply, water security must be assessed. Drawing water from the source, and the risks associated with it, cannot be viewed in isolation; the process influences, and is influenced by, other water supply elements (MOH 2014a):

- Land use and activities carried out in the area where water enters the aquifer may affect the quality of the water being abstracted.
- The quality of the groundwater will influence the type of treatment it requires.

This report will address, water security by reviewing potential sources of contamination and the likelihood of these contaminating the groundwater supply through a detailed hydrogeological risk review. In addition to this water availability and quality will be assessed with potential treatment options recommended.



#### 1.4 SITE DESCRIPTION

The site is located on the southwest edge of the Matamata township on a gently sloping area. Ground elevation across the site varies from 63 m above mean sea level (RL) in the eastern area, down to 59 m RL at the western edge of the site. There are no surface water features on site however, a gully extends from the southwest edge of the site and flows to the Mangawhero Stream located approximately 160 m west of the site. The Mangawhero Stream flows into the Waihou River approximately 4,400 m to the northwest of the site. The site is not located within a defined land drainage scheme area.

The site is currently an active farm with associated infrastructure including abstraction and monitoring groundwater bores.

#### 1.5 WATER USE AND REQUIREMENTS

Water demand calculations have been undertaken for the employment zone based on a population of 1,530 people (assuming 45 persons per hectare at 85 % developed). The calculations indicate an average daily demand of 398 m<sup>3</sup> is required with a peak flow rate of 23 L/s.

#### 1.6 CURRENT CONSENTS

There are currently three active groundwater permits owned by Waipa Valley Holdings /Calcutta as detailed in Table 1. Two of the groundwater takes are consented for volumes larger than the proposed requirements of 398 m<sup>3</sup>/day and could potentially provide the water source for the development. The location of the Java bore (72\_6680) on the edge of the proposed development site makes this the preferred option for a water supply. In accordance with the conditions of the current resource consent, water levels are measured at 15 minute intervals using pressure transducers in two adjacent observation bores (72\_6619 and 72\_6795). Bore number 72\_6619 is screened at the same depth as the Java bore (72\_6680) and is used to monitor the water level in the pumped aquifer. Bore number 72\_6795 is screened in the aquifer zone above the pumped aquifer. The abstracted water flow is measured in the Java bore (72\_6680) at 15-minute intervals.

|--|

| Consent Number   | Consent<br>Owner         | Bore<br>Number | Max<br>Daily<br>Volume<br>(m <sup>3</sup> ) | Use                             | Expiry             |
|------------------|--------------------------|----------------|---------------------------------------------|---------------------------------|--------------------|
| AUTH130710.01.01 | Waipa Valley<br>Holdings | 72_6680        | 7,200                                       | Crop Irrigation                 | 1 March 2029       |
| AUTH134035.01.02 | Calcutta Farms           | 72_7181        | 5,400                                       | Irrigation and dust suppression | 9 February<br>2030 |
| 125705           | Calcutta Farms           | 72_6068        | 16.45                                       | Shed wash down and milk cooling | 30 June 2028       |

#### 1.7 BORE CONSTRUCTION

The bore construction details for the pumped and observation bores for the two larger water permits are summarised in Table 2.

#### Table 2: Bore Construction (Calcutta Limited bores).

| Parameter <sup>(1)</sup>                     | م                 | UTH130710.01.01           |              | AUTH134035.01.02 |  |  |  |  |
|----------------------------------------------|-------------------|---------------------------|--------------|------------------|--|--|--|--|
| Bore Number                                  | 72_6680           | 72_6619                   | 72_6795      | 72_7181          |  |  |  |  |
| Purpose                                      | Production        | Monitoring                | Monitoring   | Production       |  |  |  |  |
| Owner                                        | Waipa Valley Hold | Waipa Valley Holdings Ltd |              |                  |  |  |  |  |
| Address                                      | 126 & 194 Tauran  | ga Road                   |              | 121 Banks Road   |  |  |  |  |
| Date Drilled                                 | 30 May 2013       | 4 April 2013              | 4 April 2014 | 26 May 2014      |  |  |  |  |
| Easting NZTM                                 | 1845792           | 1845801                   | 1845801      | 1845476          |  |  |  |  |
| Northing NZTM                                | 5810369           | 5810362                   | 5810362      | 5809254          |  |  |  |  |
| Depth (m)                                    | 73.5              | 100                       | 100          | 57               |  |  |  |  |
| Casing Depth<br>(m bgl) <sup>(2)</sup>       | 65                | N/A                       | N/A          | 48.1             |  |  |  |  |
| Screened Interval<br>(m bgl)                 | 65.5 to 72.5      | 70.5 to 73.5              | 50 to 54.6   | 46.8 to 55.8     |  |  |  |  |
| Diameter of<br>Casing (mm)                   | 300               | 32                        | 50           | 250              |  |  |  |  |
| Static Water Level<br>(m bgl) <sup>(3)</sup> | 16.4              | 16.09                     | 16.17        | 20.7             |  |  |  |  |
| Ground Elevation<br>(m RL)                   | 62                | 62                        | 62           | 66               |  |  |  |  |

Note: 1) Information sourced from WRC records.

- 2) m bgl = metres below ground level.
- 3) Water level sourced from pumping test reports (Terra Aqua 2013 and Terra Aqua 2014).

#### 1.8 SITE VISIT

A site visit was undertaken on 29 September 2021. A water quality sample was taken from the Java bore in accordance with current best practice. The bore was purged at a flow rate between 40 L/s and 80 L/s for 15 minutes prior to sample collection. Substantially more than three times the bore volume was removed prior to sampling the bore water as per New Zealand protocols<sup>1</sup>. The bore had not been operational since March 2021 prior to being purged. A groundwater level measurement of 16.60 m bgl was taken in the Java bore (72\_6680) prior to pumping using the conduit in the headworks (Figure 2).

There was visible iron staining on the bore head (Figure 3) indicating that management of high concentrations of iron in the source water will be a challenge for a potable supply from this bore. The groundwater will require ongoing testing and water treatment. Calcutta Farm staff indicated that iron was less of an issue in the other large diameter bore (72\_7181), although this bore is located approximately one kilometre from the development site.

The neighbouring monitoring wells and associated monitoring equipment were inspected (Figure 4).

A review of neighbouring properties was conducted to establish any potential sources of contamination.

4

<sup>&</sup>lt;sup>1</sup> https://bucketeer-54c224c2-e505-4a32-a387-75720cbeb257.s3.amazonaws.com/public/Documents/NEMS-Water-Quality-Part-1-Sampling-Measuring-Processing-and-Archiving-of-Discrete-Groundwater-Quality-Data-v1.0.0.pdf



Figure 2: Java Bore (72\_6680) Headworks.



Figure 3: Sampling Point on Java Bore (72\_6680) Showing Iron Staining.

5



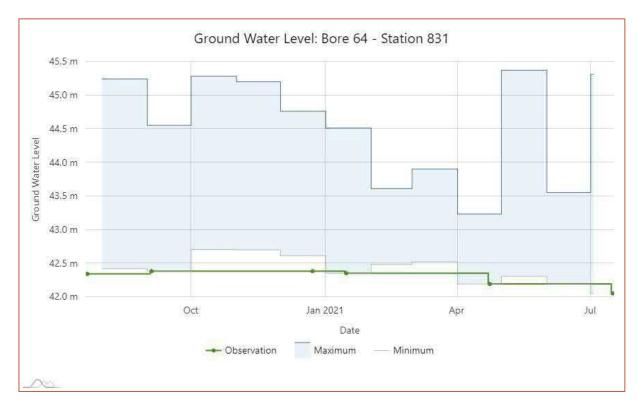
Figure 4: On site Monitoring Bores Near the Java Bore (72\_6619 and 72\_6795).

## POTABLE WATER SUPPLY

#### 2.1 WATER AVAILABILITY

#### 2.1.1 Current Usage

The monthly water usage records for the Java bore (72\_6680) are presented for years 2017 to 2021 in Table 3. Proposed water usage of 398 m<sup>3</sup>/day would equate to a maximum annual volume of 111,507 m<sup>3</sup>. The actual usage is likely to be less than this due to non working days and commercial shut down periods. During the period between 1 January 2017 and July 2021, the highest daily take was 6,487 m<sup>3</sup> with an average daily take of 1,425 m<sup>3</sup> during the pumping seasons. Unlike the current seasonal usage, water will be required throughout the year, with a lower daily demand. The current usage indicates the required annual volume is achievable.


| Month     | Water Volume (m <sup>3</sup> ) |        |         |        |        |  |  |  |  |  |  |
|-----------|--------------------------------|--------|---------|--------|--------|--|--|--|--|--|--|
| Wonth     | 2017                           | 2018   | 2019    | 2020   | 2021   |  |  |  |  |  |  |
| January   | 42,157                         | 18,607 | 49,218  | 8,788  | 15,347 |  |  |  |  |  |  |
| February  | 7,704                          | 0      | 39,713  | 38,200 | 18,555 |  |  |  |  |  |  |
| March     | 0                              | 0      | 44,120  | 11,045 | 4,882  |  |  |  |  |  |  |
| April     | 0                              | 0      | 0       | 0      | 3      |  |  |  |  |  |  |
| May       | 0                              | 0      | 120     | 450    | 0      |  |  |  |  |  |  |
| June      | 1                              | 3      | 136     | 0      | 0      |  |  |  |  |  |  |
| July      | 0                              | 1      | 0       | 0      | 0      |  |  |  |  |  |  |
| August    | 0                              | 0      | 0       | 0      | 0      |  |  |  |  |  |  |
| September | 0                              | 0      | 0       | 0      | 0      |  |  |  |  |  |  |
| October   | 0                              | 0      | 0       | 0      | 0      |  |  |  |  |  |  |
| November  | 0                              | 8,426  | 0       | 0      | 0      |  |  |  |  |  |  |
| December  | 67,746                         | 0      | 0       | 0      | 0      |  |  |  |  |  |  |
| Total     | 117,608                        | 27,037 | 133,307 | 58,483 | 38,787 |  |  |  |  |  |  |

#### Table 3: Java Bore (72\_6680) Current Water Usage.

#### 2.1.2 Water Level Monitoring

Water level monitoring is undertaken in the adjacent monitoring bores screened in the pumped aquifer (70.5 and 73.5 m bgl) and a shallower aquifer between 50.0 and 54.6 m bgl. WGA have reviewed the water level records from January 2017 to July 2021. Pumping rates during a season vary by up to 84 L/s with an average pumping rate of 50 L/s. A maximum pumping induced drawdown of 6.6 m is noted in January 2017. If the bore was to be solely used for water supply the flow rates would be reduced and the drawdown would also be expected to be less. Winter groundwater levels appear to have declined by approximately one metre over the period. However, currently low groundwater levels had been noted across the region following drier conditions over approximately two years.

Regional groundwater level data is available on WRC's Environmental Data Hub<sup>2</sup> The closest bore to the site with available groundwater level data is bore 64\_831 located near Matamata. The graph for the bore (Figure 5) shows that water levels recorded during the last 12 months since the last measurement was taken have been at or below the minimum level previously recorded during the same time of year (WRC 2021).



#### Figure 5: Groundwater Levels Recorded at WRC Monitoring Bore 64\_831.

The Calcutta site is within the management area for the Southern Hauraki Aquifer. A recent search of the Waikato Regional Council (WRC) database indicated that the allocation for groundwater is currently at 3 % of the management level set for the Southern Hauraki Aquifer. The management level for the Southern Hauraki is 335,000,000 m<sup>3</sup>/year according to Table 3-6 of the Waikato Regional Plan (WRC 2012).

#### 2.2 WATER QUALITY

#### 2.2.1 Laboratory Results

Results of laboratory analysis undertaken on a water sample from the Java bore (72\_6680) are recorded in the WRC database. All results are included in Table 4. The laboratory reports for the 2021 sampling are included in Appendix B of this report.

The results of the analyses have been compared to the Ministry of Health Guideline Values and Maximum Acceptable Values for drinking water where applicable (MOH 2018). The Maximum Acceptable Values (MAVs) have been defined by the Ministry of Health for parameters of health significance and should not be exceeded. The Guideline Values are the limits for aesthetic determinants that, if exceeded, may render the water unattractive to consumers.

8

<sup>&</sup>lt;sup>2</sup> https://waikatoregion.govt.nz/environment/envirohub/environmental-maps-and-data?dt=Groundwater+Level

Iron and manganese are high in both water quality samples taken and will require treatment to meet the guideline values for aesthetics and in the case of manganese, the MAV of 0.4 g/m<sup>3</sup>. Both iron and manganese can cause staining and particularly in the case of iron, iron bacteria can precipitate and cause clogging of the water supply infrastructure. The presence of high iron and manganese is common in deeper aquifer systems and is an indicator of a more confined system with older groundwater which has dissolved minerals from the rocks that make up the aquifer along the groundwater flow path.

Arsenic concentrations in the water samples are below the MAV of 0.01 g/m<sup>3</sup> by a small margin which is potentially due to the long periods of the bore shutdown in the winter period. Regular sampling would be required to ensure the arsenic concentration does not vary seasonally and is consistently below the MAV.

The water quality samples taken are a taken at single points and do not reflect any potential seasonal variation.

| Analyte                    | Unit                    | Sample<br>17 Dec 2014 | Sample<br>29 Sep<br>2021 | Guideline<br>Value                      | Max<br>Acceptable<br>Value (MAV) |
|----------------------------|-------------------------|-----------------------|--------------------------|-----------------------------------------|----------------------------------|
| Escherichia coli           | MPN/100mL               | -                     | <1                       | -                                       | <1                               |
| рН                         | рН                      | 6.8                   | 7                        | 7.0 - 8.5                               | -                                |
| Turbidity                  | NTU                     | -                     | 40                       | <2.5                                    | -                                |
| Alkalinity Total           | g/m <sup>3</sup> -CACO3 | 116                   | 89                       | -                                       | -                                |
| Free Carbon Dioxide        | g/m³-CO2                | 33                    | 16.4                     | -                                       | -                                |
| Dissolved Oxygen           | g/m³                    | 8.9                   | -                        | -                                       | -                                |
| Conductivity at 25<br>DegC | mS/m @25°C              | 32.9                  | 19.2                     | -                                       | -                                |
| Total Hardness             | g/m³-CACO3              | 65                    | 42                       | <200                                    | -                                |
| Total Dissolved Solids     | g/m³                    | 220                   | 129                      | <1000                                   | -                                |
| Total Arsenic              | g/m³                    | 0.0053                | 0.0074                   | -                                       | 0.01                             |
| Total Boron                | g/m³                    | 0.093                 | 0.045                    | -                                       | 1.4                              |
| Total Calcium              | g/m³                    | 12.2                  | 6.2                      | -                                       | -                                |
| Total Copper               | g/m³                    | 0.0039                | <0.00053                 | <1                                      | 2                                |
| Total Iron                 | g/m³                    | 5.9                   | 7.9                      | <0.2                                    | -                                |
| Dissolved Iron             | g/m³                    | 2.3                   | -                        | -                                       | -                                |
| Total Lead                 | g/m³                    | -                     | <0.00011                 | -                                       | 0.01                             |
| Total Magnesium            | g/m³                    | 8.3                   | 6.4                      | -                                       | -                                |
| Total Manganese            | g/m³                    | 0.3                   | 0.56                     | <0.04<br>(Staining)<br><0.10<br>(Taste) | 0.4                              |
| Dissolved Manganese        | g/m³                    | 0.31                  | -                        | -                                       | -                                |
| Total Potassium            | g/m³                    | 5.3                   | 4.7                      | -                                       | -                                |
| Total Sodium               | g/m³                    | 41                    | 25                       | <200                                    | -                                |
| Total Zinc                 | g/m³                    | 0.0032                | 0.02                     | <1.5                                    | -                                |
| Dissolved Chloride         | g/m³                    | 34                    | 7.4                      | <250                                    | -                                |
| Nitrate-N                  | g/m³-N                  | 0.05                  | <0.05                    | -                                       | 11.3                             |
| Ammoniacal Nitrogen        | g/m³-N                  | 0.56                  | -                        | -                                       | -                                |
| Reactive Silica            | g/m3 as SiO2            | 92                    | -                        | -                                       | -                                |

#### Table 4: Results of Laboratory Analysis for Java Bore (72\_6680).

| Analyte                          | Unit   | Sample<br>17 Dec 2014 | Sample<br>29 Sep<br>2021 | Guideline<br>Value | Max<br>Acceptable<br>Value (MAV) |
|----------------------------------|--------|-----------------------|--------------------------|--------------------|----------------------------------|
| Dissolved Reactive<br>Phosphorus | g/m³-P | 0.018                 | -                        | -                  | -                                |
| Sulphate Dissolved               | g/m³   | 0.5                   | <0.5                     | <250               | -                                |

#### 2.3 WATER TREATMENT

Iron and manganese water treatment generally involves oxidation and filtration of the water. The oxidant chemically oxidizes the iron or manganese (forming a particle) and kills iron bacteria and any other disease-causing bacteria that may be present. The filter then removes the iron and/or manganese particles.

In general, manganese oxidation is considered more difficult than iron oxidation because the reaction rate is slower. A longer detention time (10 to 30 minutes) following chemical addition is needed prior to filtration to allow the reaction to take place. There are different filtration media for the removal of iron and manganese, including manganese greensand, anthra/sand or iron-man sand, electromedia, and ceramic.

Manganese greensand can be applied in one step, combining the oxidation and filtration phases for the removal of iron and manganese through pressure filtration. Greensand is a processed material consisting of nodular grains of the zeolite mineral glauconite. The material is coated with manganese oxide. The ion exchange properties of the glauconite facilitates the bonding of the coating. This treatment gives the media a catalytic effect in the chemical oxidation-reduction reactions necessary for iron and manganese removal. This coating is maintained through either continuous or intermittent feed of potassium permanganate. The source water must be monitored to determine proper oxidant dosage, and the treated water should be monitored to determine if the process was successful. (MOH 2007)

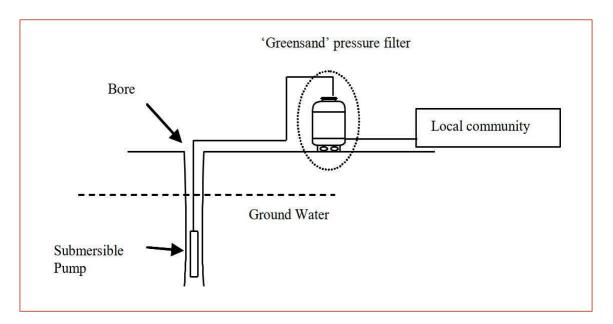



Figure 6: Simplified Diagram of Greensand filtration of Groundwater (MOH 2007).

The MoH's Water Safety Plan guide P8.2 (MOH 2014b) states that the two events creating the greatest risk involved in the removal of iron and manganese from water are adding too much oxidant to the water and germs getting into the water during aeration.

The most important preventive measures are:

- Monitor the process to be sure the right dose is used, regardless of how the quality of the incoming water may change.
- Regularly maintain the dosing equipment.
- Place netting over aerator grills to stop entry of larger animals.

Water treatment for high iron and manganese requires ongoing maintenance and regular testing of the water supply to ensure parameters of concern are managed to an acceptable level.

# **3** WATER SECURITY

#### 3.1 POTENTIAL SOURCES OF CONTAMINATION

As outlined in Section 1.3, to assess water security for a proposed water supply, the potential for contamination, the risk these pose to the water source and the condition and type of infrastructure need to be considered.

During the site visit, a number of industrial uses were observed within a 1.5 km radius of the site, including an industrial area, petrol station and refuse transfer station. These activities were noted to be to the northeast of the proposed water supply and therefore downgradient in terms of the groundwater flow direction.

A search of the Waikato Regional Council (WRC) Land Use Information Register for information on nearby sites was conducted. WRC maintains the Land Use Information Register of properties known to be contaminated on the basis of chemical measurements, or potentially contaminated on the basis of past land use. The 'potentially contaminated' category is gradually being compiled with reference to past or present land uses that have a greater than average chance of causing contamination, as outlined in the Ministry for the Environment's Hazardous Activities and Industries List (HAIL).

A number of verified HAIL sites were identified in the industrial area to the north of Java bore (72\_6680), including the petrol station (Figure 1). A combined Preliminary Site Investigation (PSI) and Detailed Site Investigation (DSI) was undertaken in November 2021 (4Sight Consulting (2021). 4Sight Consulting concluded that all soil sampling analytical results were below the adopted human health criteria and it is highly unlikely that HAIL activity has occurred at the Site ('Any other land that has been subject to the intentional or accidental release of a hazardous substance in sufficient quantity that it could be a risk to human health or the environment'). Based on this information we consider it is unlikely the shallow groundwater at the site will pose a risk to the deeper groundwater.

#### 3.2 HYDROGEOLOGICAL REVIEW

A review of the hydrogeological setting of the water source has been carried out to assess the potential risks of contaminants influencing the water quality. This includes a review of the regional geology and our current understanding of the local aquifer properties based on previous onsite testing and literature.

#### 3.2.1 Regional Geology and Hydrogeology

The site lies within the Hauraki Plains, which form part of a young continental rift structure bounded by major normal faults. The plains are bounded to the west by poorly permeable greywacke of the Hapuakohe and Pakaroa Ranges and to the east by the Kaimai Ranges, which consist predominantly of andesitic and rhyolitic rock (Hadfield 2001). A large thickness of predominantly Tauranga Group sediments deposited by ancient Waikato River channels infills the depression structure to a depth of up to 3 km.

The Tauranga Group alluvial sediments constitute a large leaky hydraulic system incorporating numerous lensoidal aquifers. The volcanogenic alluvial deposits form a sequence of layers of sands, gravels, silts, clays and peat. The geological map of the area (Edbrooke 2005) indicates the majority of the site is underlain by the older Tauranga Group sediments of the Walton Subgroup. The map indicates the younger Peria Formation overlies the Walton Subgroup in a limited section at the southern edge of the site.

Sand and gravel aquifers are utilised widely across the plains for water supply and irrigation purposes. The variability of paleochannel alluvial sediments in the basin results in a large range of transmissivities, ranging from less than 5 m<sup>2</sup>/day up to 25,000 m<sup>2</sup>/day (Hadfield 2001). The general groundwater flow direction is northwards toward the Firth of Thames coastline. Deeper groundwater is considered to discharge offshore beneath the Firth of Thames (GNS 2018).

#### 3.2.2 Local Hydrogeological Setting

The geological description of the two large diameter bores (72\_6680 and 72\_7181) are summarised from the driller's log in Appendix C. The geological log indicates that Java bore (72\_6680) is drilled into a pumiceous sand/gravel aquifer, which is part of the Quaternary Tauranga Group sediments. It is noted that the geological logs provided are simple representations and potentially exclude stratigraphic detail. Based on the geological log descriptions, the source aquifer is considered confined or semi-confined beneath low permeability units consisting mainly of silts and clays. The geological log for bore 72\_7181 shows a similar sequence of sand and gravel layers interspersed with layers of lower permeability silts. The bore is screened in a shallower sand aquifer than Java bore (72\_6680).

Recharge to the Tauranga Group sediments is likely to be from rainfall infiltration across the area to the south of the site. The exact age and origins of the source water in bore the Java bore (72\_6680) is unknown. Iron in the water indicates confined older groundwater source as the metals dissolve into the groundwater from the aquifer through time. The longer residence time in the aquifer leads to naturally higher metal concentrations. Isotope testing can provide insight on the origins and age of the groundwater and enable an assessment of the source of the water and potential sources of contamination in the specific recharge area.

In October 2013, a 7 day (168-hour) constant rate pumping test was carried out on the Java bore (72\_6680) in support of an application for a resource consent to take groundwater at a rate of 7,200 m<sup>3</sup>/day. In addition, a 72 hour pumping test was undertaken in August 2014 on bore 72\_7181 at a rate of 5,400 m<sup>3</sup>/day. Previous pumping test data and analysis provide evidence of multiple overlying layers causing to leaky characteristics in the source aquifers for both bores (72\_6680 and 72\_7181).

Drawdown and recovery data from the constant rate pumping tests undertaken were analysed and aquifer parameters were derived as follows (Terra Aqua 2013, Terra Aqua 2014):

- Transmissivity: 387 m<sup>2</sup>/day to 911 m<sup>2</sup>/day (72\_6680).
- Transmissivity: 349 m<sup>2</sup>/day to 659 m<sup>2</sup>/day (72\_7181).
- Storativity: 0.0003 to 0.0005 (72\_7181).

Storativity values were not derived in the pumping test analysis for the Java bore (72\_6680). Although WGA has not reviewed the pumping test data in detail, the aquifer parameters derived appear to be reasonable given the geological setting, literature values and observations.

#### 3.2.3 Aquifer Flow Gradients

There are no shallow bores in the WRC database with groundwater levels in the vicinity of Java bore (72\_6680), however a geotechnical investigation was conducted on site in June 2021 with shallow groundwater depths recorded, in hand augers, between 2.9 m bgl and 4.8 m bgl (CMW 2021). WGA also carried out a search of the New Zealand Geotechnical database. A number of shallow hand augers and CPT bores have been drilled at site to the west of Java bore (72\_6680). These indicate groundwater levels in the shallower aquifer units to be between 5 and 9 m bgl. These relative groundwater levels indicate a downward flow gradient with depth which could lead to pumping induced recharge occurring from the overlying aquifers through the lower permeability silt layers.

The groundwater levels recorded in the shallower monitoring bore (72\_6795) from October 2020 to July 2021 show a declining trend (Figure 7). Pumping from the underlying aquifer for irrigation occurred between 5 January 2021 and 28 March 2021. A declining trend would be expected through spring and summer. From the end of January, the water levels decline at a faster rate than earlier in the irrigation season. This increased decline in water levels coincides with intensification of the irrigation season, allowing for a delay in potential leakage from the overlying aquifer. The trend line in Figure 7 shows the water level decrease we might expect in the aquifer with no pumping in the deeper aquifer. WGA consider there is a difference of approximately 0.02 m between the projected and recorded groundwater levels on 1 April 2021, at the end of the pumping period. To estimate the hydraulic conductivity of the unit between the two screened aquifers, WGA used the Hunt and Scott (2007) solution for a two-aquifer system. The results of this analysis suggest that the vertical hydraulic conductivity between the pumped and overlying aquifer is approximately 0.015 m/day.

There are other factors which may also influence monitored groundwater levels, for example influence of pumping in the overlying aquifer itself, however, we note that leakage was observed during the 72 hour pumping test (Terra Aqua 2013). Therefore, WGA consider that some degree of vertical downward leakage is occurring. Leakage through the overlying silts could induce any contamination that may be present in the overlying groundwater to enter the aquifer being used as a potable supply. The degree of leakage would decrease if the flow rate was decreased.

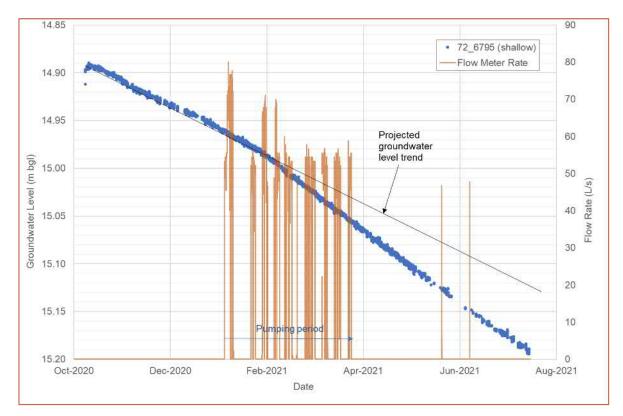



Figure 7: Groundwater Levels in the Overlying Aquifers During Pumping in Java bore (72\_6680).

#### 3.2.4 Surface Water and Groundwater Interaction

There are no surface water features on site however, a gully extends from the southwest edge of the site and flows to the Mangawhero Stream located approximately 160 m west of the site. The Mangawhero Stream flows into the Waihou River approximately 4,400 m to the northwest of the site. The site is not located within a defined land drainage scheme area. The base of the Mangawhero Stream is at an elevation of 42 m RL. The aquifer pumped aquifer unit is approximately 40 m below the base of the stream and these are unlikely to be in directly hydraulically connected.

#### 3.3 BORE INFRASTRUCTURE SECURITY

A general assessment of the bore headworks was carried out during the site visit. The headworks are constructed to a relatively high standard and is in good condition. The area is flat and therefore reducing the risk of runoff entering any damaged headworks. In addition, the headworks and associated infrastructure is located above ground which is best practice for a drinking water supply. There are some minor upgrades that will be required to provide water security for a potable supply as follows:

- Small cracks were noted in the concrete around the wellhead. These cracks can be repaired prior to a change of use for the bore.
- A security fence will need to be erected around the bore and treatment infrastructure.

# CONCLUSIONS AND RECOMMENDATIONS

#### 4.1 CONCLUSIONS

WGA's review of the onsite bores indicates that the Java bore (72\_6680) and associated water permit have sufficient volumes to provide for the proposed development. The bore infrastructure is sound with minor repairs needed and additional security fencing required if the bore is used for potable water in the future. A water treatment system would need to be set up at the site to cope with the high concentrations of iron and manganese. Treatment of the source water to reach potable requirements is not a limiting factor but further assessments can be carried out to ensure the initial costs and ongoing maintenance of the treatment system is achievable for the development.

The water has high concentrations of iron and manganese which can cause issues with staining and, in the case of manganese can be harmful to human health at these concentrations. Water treatment options for these metals include oxidation followed by filtration. The arsenic concentration measured in the water sample is below the guideline limit but will need to be monitored for seasonal variations.

The hydrogeological assessment indicated that there are numerous lenses of alternating aquifer and aquitard layers which could be discontinuous. Some degree of leakage can be seen across these upper lower permeability layers which may lead to recharge from the surrounding surface area to the deeper groundwater. There are some potential sources of contamination in the surrounding area, however most of these are downgradient from the water source so the risk is lower. The high concentration of metals in the water indicates relatively long residence time in the aquifer and therefore the majority of the recharge is likely to be in an area further upgradient than the nearby contamination sources. Further delineation of the source zone can be carried out to manage the risk.

#### 4.2 RECOMMENDATIONS

It is recommended that in the next stages of the development that further assessment is undertaken to fully understand the risks associated with the supply:

- Three monthly water quality sampling should be undertaken in order to account for seasonal variability, particularly with respect to arsenic concentrations.
- Review costs associated with required treatment, ongoing maintenance and sampling.
- Carry out further hydrogeological assessments to define the source water zone once the final flow rates are known. Part of this assessment could include isotope testing of the water to determine the age of the water which will provide assurances for water security.
- Consider options for another groundwater supply such as the onsite bore 72\_7181 which potentially requires less water treatment but longer distribution pipelines.



- 4Sight Consulting 2021. Preliminary Site Investigation (PSI) and Detailed Site Investigation (DSI) Report. SH24 Matamata Industrial Plan Change and Future Subdivision. November 2021.
- CMW 2021. Geotechnical Investigation Report. Tauranga Road Industrial Subdivision, 194 Tauranga Road (SH24), Matamata. Report number TGA2020-0304AC. August 2021.
- Edbrooke, S.W. (compiler) 2005: Geology of the Waikato area. Institute of Geological & Nuclear Sciences 1:250000 geological map 4
- GNS. 2018. Geological model and water budget of the Hauraki Plains, Waikato Region, P.A White, M. Raiber and C Tschritter. GNS Science Consultancy Report 2015/232. May 2008
- Hadfield J. 2001. Waikato. In Groundwaters of New Zealand, M.R Rosen and P.A White (eds). New Zealand Hydrological Society Inc., Wellington 315-326.
- Hantush, M.S. and C.E. Jacob, 1955. Non-steady radial flow in an infinite leaky aquifer, Am. Geophys. Union Trans., vol. 36, no. 1, pp. 95-100.
- Hunt, B., Scott, D. 2007. Flow to a well in a two-aquifer system. Journal of Hydraulic Engineering. Vol.12, No. 2, 146–155.
- Ministry of Health. 2007. Treatment Options for Small Drinking Water Supplies Resources for drinking water Assistance Programme. Wellington: Ministry of Health.
- Ministry of Health. 2014. Water Safety Plan Guide: Groundwater Abstraction Bores and Wells, Version 1, ref p1.3. Wellington: Ministry of Health.
- Ministry of Health. 2014. Water Safety Plan Guide: Treatment Processes Iron and Manganese Removal, Version 1, ref p8.2. Wellington: Ministry of Health.
- Ministry of Health. 2018. Drinking-water Standards for New Zealand 2005 (revised 2018). Wellington: Ministry of Health.
- Terra Aqua Consultants Limited 2013. Assessment of Environmental Effects of Taking Groundwater from 72\_6680, 126A Tauranga Road, Matamata.
- Terra Aqua Consultants Limited 2014. Assessment of Environmental Effects of Taking Groundwater from 72\_7181, 121 Banks Road, Matamata.
- WRC. 2012. Waikato Regional Plan. Environment Waikato Policy Series 2007/21. Reprinted 2012.

WRC. 2021. Environment Data Hub. Bore 64 – Station 831 Groundwater. Accessed 26 July 2021.

# **APPENDIX A** CURRENT CONSENTS

## Resource Consent Certificate

| Resource Consent: | 125705 |
|-------------------|--------|
|                   |        |

**File Number:** 60 68 10A

Pursuant to the Resource Management Act 1991, the Waikato Regional Council hereby grants consent to:

Calcutta Farms Limited 166 Heights Road RD1 Pukekohe 2676

#### (hereinafter referred to as the Consent Holder)

| Consent Type:        | Water permit                                                                                                                                     |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Consent Subtype:     | Ground water take                                                                                                                                |
| Activity authorised: | To take groundwater                                                                                                                              |
| Location:            | 80 Burwood Road - Matamata (Fonterra 77481)                                                                                                      |
| Spatial Reference:   | NZTM 1845422 E 5809759 N                                                                                                                         |
| Consent Duration:    | This consent will commence on the date of decision notification, unless otherwise stated in the consent's conditions, and expire on 30 June 2028 |

Subject to the conditions overleaf:

#### General

- 1. The activity authorised by this resource consent shall be undertaken:
  - i) In general accordance with the application for this resource consent received 28 November 2012 (as recorded on the Waikato Regional Council's electronic document management system document no. 2305419) and any documentation supporting the application.
  - ii) As specified in the resource consent conditions below.

Where there is any disagreement between the application and the consent conditions set out below, then the consent conditions shall prevail.

2. Groundwater taken in association with this consent shall be used for dairy shed wash down and milk cooling purposes at the 80 Burwood Road, Matamata site.

#### **Operational Limits**

1

- 3. The maximum daily volume of groundwater taken for shed wash down and milk cooling water shall not exceed **16.45 cubic metres**<sup>1</sup>.
  - This volume includes the 15 cubic metres per day provided for under permitted activity rule 3.3.4.12 of the Waikato Regional Plan.

#### Measuring, Recording and Reporting

- 4. Access to the bores to perform pumping tests, and for the measurement of static water levels shall be provided to the staff and agents of the Waikato Regional Council at all times.
- 5. The consent holder shall maintain a system of leak detection mechanisms for the reticulation network for the water taken in association with this consent. These mechanisms shall include, as a minimum, those stated in the application for this resource consent, and evidence of leak detection mechanisms shall be provided to Waikato Regional Council upon written request.

#### Review

- 6. At any time during the years 2016, 2019, 2022 and 2025, the Waikato Regional Council may, following service of notice on the consent holder, commence a review of the conditions of this resource consent pursuant to section 128(1) of the Resource Management Act 1991 for the following purposes:
  - to review the effectiveness of the conditions of this resource consent in avoiding or mitigating any adverse effects on the environment from the exercise of this resource consent and if necessary to avoid, remedy or mitigate such effects by way of further or amended resource consent conditions; or
  - ii) to review the adequacy of and the necessity for monitoring undertaken by the consent holder.
- 7. At any time during the period 1 July 2024 to 30 June 2025 the Waikato Regional Council may, following service of notice on the consent holder, commence a review of the conditions of this resource consent pursuant to section 128(1) of the Resource Management Act 1991 to take into account any change to the Waikato Regional Plan being proposed as a result of any catchment investigation undertaken by the Waikato Regional Council.
- 8. Within 12 months of any co-management legislation commencing for the Hauraki Gulf catchment, the Waikato Regional Council may, following service of notice on the consent holder pursuant to section 129 of the Resource Management Act 1991, commence a review of the conditions of this consent pursuant to section 128 of the Resource Management Act 1991, for the purpose of ensuring that this consent is consistent with the provisions of any such legislation

#### Administration

9. The consent holder shall pay to the Waikato Regional Council any administrative charge fixed in accordance with section 36 of the Resource Management Act 1991, or any charge prescribed in accordance with regulations made under section 360 of the Resource Management Act.

For and on behalf of the Waikato Regional Council

#### Administration

9. The consent holder shall pay to the Waikato Regional Council any administrative charge fixed in accordance with section 36 of the Resource Management Act 1991, or any charge prescribed in accordance with regulations made under section 360 of the Resource Management Act.

For and on behalf of the Waikato Regional Council

#### **Advice notes**

- 1. In accordance with section 125 RMA, this consent shall lapse five (5) years after the date on which it was granted unless it has been given effect to before the end of that period.
- 2. Where a resource consent has been issued in relation to any type of construction (e.g. dam, bridge, jetty) this consent does not constitute authority to build and it may be necessary to apply for a Building Consent from the relevant territorial authority.
- 3. This resource consent does not give any right of access over private or public property. Arrangements for access must be made between the consent holder and the property owner.
- 4. This resource consent is transferable to another owner or occupier of the land concerned, upon application, on the same conditions and for the same use as originally granted (s.134-137 RMA).
- 5. The consent holder may apply to change the conditions of the resource consent under s.127 RMA.
- 6. The reasonable costs incurred by Waikato Regional Council arising from supervision and monitoring of this/these consents will be charged to the consent holder. This may include but not be limited to routine inspection of the site by Waikato Regional Council officers or agents, liaison with the consent holder, responding to complaints or enquiries relating to the site, and review and assessment of compliance with the conditions of consents.
- 7. Note that pursuant to s333 of the RMA 1991, enforcement officers may at all reasonable times go onto the property that is the subject of this consent, for the purpose of carrying out inspections, surveys, investigations, tests, measurements or taking samples.
- 8. If you intend to replace this consent upon its expiry, please note that an application for a new consent made at least 6 months prior to this consent's expiry gives you the right to continue exercising this consent after it expires in the event that your application is not processed prior to this consent's expiry.

### RESOURCE CONSENT CERTIFICATE

Resource Consent: AUTH130710.01.01

**File Number:** 61 60 44A

### Pursuant to the Resource Management Act 1991, the Waikato Regional Council hereby grants consent to:

Waipa Valley Holdings Limited C/- Kevin Balle 166 Heights Road RD 1 Pukekohe

#### (hereinafter referred to as the Consent Holder)

**Consent Type:** Water Permit

Consent Subtype: Groundwater take

Activity authorised: To take groundwater from production bore 72\_6680

Location: Tauranga Road – Matamata

Spatial Reference: NZTM 1845792E 5810369N

**Consent Duration:** This consent will commence on the date of decision notification and expire on 1 March 2029.

Subject to the conditions overleaf:

- 1. The activity authorised by this resource consent shall be undertaken:
  - 1. In general accordance with the application for this resource consent lodged 18 November 2013 (as recorded in the Waikato Regional Council's electronic document management system document No. 2910799), and any documentation supporting the application; and
  - 2. As specified in the resource consent conditions below.

Where there is any disagreement between the application documentation and resource consent conditions the resource consent conditions below shall prevail.

- 2. The water taken pursuant to this resource consent shall be used for crop irrigation.
- 3. The maximum volume to be taken from the production bore (identified as Waikato Regional Council Located ID 72\_6680) in any 24 hour period shall not exceed 7200 cubic metres.
- 4. The maximum seasonal volume of groundwater to be taken from production bore 72\_6680 shall not exceed 327,570 cubic metres. For the purposes of this consent the irrigation season is defined as the period 1 July to 30 June the following year, inclusive.
- 5. A water measuring system shall quantify water taken from the take location on a cumulative basis. The system shall have a reliable calibration to water flow and shall be maintained to an accuracy of +/- 5%. Prior to first commencing to take water under this consent, evidence of the water measuring system's calibration to an accuracy of +/- 5% shall be provided to the Waikato Regional Council.
- 6. An 'as-built' plan of the water measuring system shall be provided to the Waikato Regional Council prior to giving any effect to take water under this consent.
- 7. Additional calibration of the water measuring system shall be undertaken by the consent holder:
  - 1. at the written request of the Waikato Regional Council; and
  - 2. at a frequency of no less than five yearly from the date of the first calibration required by condition 5; and
  - 3. to the satisfaction of the Waikato Regional Council.

Evidence documenting each respective additional calibration shall be forwarded to the Waikato Regional Council within one month of the calibration being completed.

- 8. The consent holder shall record with a tamper-proof data logger continuous 15 minute values of take volume (in units of cubic metres). These data shall be reported by the consent holder via either of the following:
  - A telemetry system developed after liaison with the Waikato Regional Council to ensure that the telemetry system is compatible with Waikato Regional Council telemetry system standards and data protocols. The data shall be submitted once daily to the Waikato Regional Council and there shall be 96

values per daily report. When no water is being taken during the irrigation season, the data must specify the take volume as zero.

- An email system requiring that, within the first 10 working days of each month, the data for the preceding month are submitted to the Waikato Regional Council via email in agreed electronic format. There shall be 96 values for each respective day in the reporting month of interest. When no water is being taken during the irrigation season, the data must specify the take volume as zero.
- 9. The consent holder shall measure and record water level in the observation bore identified as Waikato Regional Council Located ID 72\_6619. As a minimum the consent holder shall record water level on a weekly basis and electronically record:
  - 1. The date and time on which the record is taken; and
  - 2. The water level (in metres) below the top of the casing.

This data required by 9.1. and 9.2. shall be reported to the Waikato Regional Council twice per year, on 1 May and 1 November for each year the consent is current. Records must also be supplied when requested by the Waikato Regional Council.

- 10. Prior to the exercise of this consent the consent holder in consultation with the Waikato Regional Council, shall identify a suitable monitoring bore to monitor water level within the shallow aquifer. In the event that the consent holder cannot identify such an existing bore, the consent holder in consultation with the Waikato Regional Council, shall establish and maintain a new bore for this purpose. As a minimum the consent holder shall record water level on a weekly basis and electronically record:
  - 1. The date and time on which the record is taken; and
  - 2. The water level (in metres) below the top of the casing.

This data required by 10.1. and 10.2. shall be reported to the Waikato Regional Council twice per year, on 1 May and 1 November for each year the consent is current. Records must also be supplied when requested by the Waikato Regional Council.

- 11. At any time during the period July through September, inclusive, of each year that this water take is authorised the Waikato Regional Council may, following service of notice on the consent holder, commence a review of the conditions of this resource consent pursuant to section 128(1) of the Resource Management Act 1991 for the following purposes:
  - to review the effectiveness of the conditions of this resource consent in avoiding or mitigating any adverse effects on the environment from the exercise of this resource consent and if necessary to avoid, remedy or mitigate such effects by way of further or amended resource consent conditions; or
  - 2. to review the adequacy of and the necessity for monitoring undertaken by the consent holder.

- 12. At any time during the period 1 July 2027 through 30 June 2028 the Waikato Regional Council may, following service of notice on the consent holder, commence a review of the conditions of this resource consent pursuant to section 128(1) of the Resource Management Act 1991 to take account of any change to the Waikato Regional Plan being proposed as a result of any catchment investigation undertaken by the Waikato Regional Council.
- 13. The consent holder shall pay to the Waikato Regional Council any administrative charge fixed in accordance with section 36 of the Resource Management Act 1991, or any charge prescribed in accordance with regulations made under section 360 of the Resource Management Act 1991.

In terms of s116 of the Resource Management Act 1991, this consent commences on 15 January 2014.

#### ADVICE NOTES

- 1. In accordance with s125 RMA, this consent shall lapse five (5) years after the date on which it was granted unless it has been given effect to before the end of that period.
- 2. This resource consent does not give any right of access over private or public property. Arrangements for access must be made between the consent holder and the property owner.
- 3. This resource consent is transferable to another owner or occupier of the land concerned, upon application, on the same conditions and for the same use as originally granted (s.134-137 RMA).
- 4. The consent holder may apply to change the conditions of the resource consent under s.127 RMA.
- 5. The reasonable costs incurred by Waikato Regional Council arising from supervision and monitoring of this/these consents will be charged to the consent holder. This may include but not be limited to routine inspection of the site by Waikato Regional Council officers or agents, liaison with the consent holder, responding to complaints or enquiries relating to the site, and review and assessment of compliance with the conditions of consents.
- 6. Note that pursuant to s333 of the RMA 1991, enforcement officers may at all reasonable times go onto the property that is the subject of this consent, for the purpose of carrying out inspections, surveys, investigations, tests, measurements or taking samples.
- 7. If you intend to replace this consent upon its expiry, please note that an application for a new consent made at least 6 months prior to this consent's expiry gives you the right to continue exercising this consent after it expires in the event that your application is not processed prior to this consent's expiry.
- 8. The water taken pursuant to this resource consent shall be used to irrigate crops in accordance with the Waikato Regional Plan's 3.4.5.6 Permitted Activity Rule Use of Water for Crop and Pasture Irrigation.

### RESOURCE CONSENT CERTIFICATE

| Resource Consent:    | AUTH134035.01.02                                                                                   |
|----------------------|----------------------------------------------------------------------------------------------------|
| File Number:         | 60 68 04A                                                                                          |
|                      | Pursuant to the Resource Management Act 1991, the<br>Regional Council hereby grants consent to:    |
|                      | Calcutta Farms Limited<br>166 Heights Road<br>RD 1<br>Pukekohe 2676                                |
|                      | (hereinafter referred to as the Consent Holder)                                                    |
| Consent Type:        | Water Permit                                                                                       |
| Consent Subtype:     | Ground water take                                                                                  |
| Activity authorised: | To take and use groundwater for irrigation and dust suppression purposes                           |
| Location:            | 121 Banks Road: Matamata                                                                           |
| Map reference:       | NZTM 1845476 E 5809254 N                                                                           |
| Consent duration:    | This consent will commence on the date of decision notification and will expire on 9 February 2030 |
|                      |                                                                                                    |

Subject to the conditions overleaf:

#### CONDITIONS

- 1) The activity authorised by this resource consent shall be undertaken:
  - in general accordance with the application for this resource consent lodged 2 October 2013 (as recorded on the Waikato Regional Council's electronic document management system document no. 3204092), and any documentation supporting that application; and
  - (2) as specified in the resource consent conditions below.

Where there is any disagreement between the application and the consent conditions set out below, then the consent conditions shall prevail.

- 1A) That the landuse activity shall be carried out generally in accordance with the Resource Consent Certificate AUTH134035.01.01 at 121 Banks Road, Matamata except where amended by the following variations:
  - Application for variation by Maven BOP Ltd on behalf of Calcutta Farms Limited titled Application for s127 Variation to Resource Consent AUTH134035.01.01 Calcutta Farms Limited 121 Banks Road Matamata.

Unless otherwise amended by the following conditions.

- 2) The water taken pursuant to this resource consent shall be used for horticultural, pasture irrigation purposes and dust suppression only.
  - (1) Water taken for dust suppression purposes can be up to a maximum of 100,000 litres on any given day.
- 2A Pursuant to this resource consent, dust suppression measures can occur over a 10 year period. The 10 year period will expire on the 9 February 2030.
- 3) The maximum volume to be taken from the production bore identified as Waikato Regional Council Located ID 72\_7181 (hereinafter referred to as "72\_7181") shall not exceed 5400 cubic metres in any 24 hour period.
- 4) The maximum annual volume to be taken from the production bore 72\_7181 shall not exceed 248,400 cubic metres.
- 5) Prior to exercise of consent a sealed tamper-proof water measuring device suited to the quality of water it is measuring, capable of electronic recording and reporting shall be installed on the production bore 72\_7181:
  - (1) to the manufacturer's specifications, and
  - (2) at the take location from which water is taken

to record the quantity of water taken on a cumulative basis. The water measuring device shall have a reliable calibration to water flow which shall be maintained to an accuracy of plus or minus five percent. Evidence of the water measuring device's accuracy to water flow shall be provided to the Waikato Regional Council by 31 July 2015.

- 6) Calibration of the water measuring device to water flow shall be undertaken by the consent holder:
  - (1) At the written request of the Waikato Regional Council; and/or
  - (2) At a frequency of no less than five yearly from the date of the first calibration required by condition 5.

The consent holder shall engage an independent and suitably qualified person to conduct the calibration and evidence documenting the calibration to water flow and level of accuracy shall be forwarded to the Waikato Regional Council within one month of the calibration being completed.

7) The consent holder must telemeter – via a telemetry system developed after liaison with the Waikato Regional Council to ensure that the telemetry system is compatible with Waikato Regional Council telemetry system standards and data protocols – continuous 1 – hourly values of net take volume (in units of cubic metres) for irrigation purposes.

The data must be reported once daily to the Waikato Regional Council via the telemetry system and there must be 24 irrigation values per daily report. When no water for irrigation purposes is taken the data must specify the net take volume as zero.

- 8) By 31 July each year, the consent holder shall provide a summary of the crop(s) and areas(s) under irrigation management during the preceding year. The summary shall include on a monthly basis, the volume of water irrigated (cubic metres), application rate (mm), crop type and area irrigated (ha).
- 9) The consent holder must measure and record the depth to water within the monitored piezometers (applicant ID OB30 and OB 54 collectively known as Waikato Regional Council Located ID 72\_7182). The measurement point above ground must be provided to the Waikato Regional Council prior to the exercise of this consent for each piezometer. Water level must be:
  - (1) Measured with electronic continuous water level monitoring equipment;
  - (2) Recorded at a 1-hourly frequency.
- 10) The consent holder must telemeter via a telemetry system developed after liaison with the Waikato Regional Council to ensure that the telemetry system is compatible with Waikato Regional Council telemetry system standards and data protocols the monitoring data recorded pursuant to condition 9. The data must be reported once daily to the Waikato Regional Council via the telemetry system and there must be 24 values per daily report.
- 11) At any time during the:
  - (1) years of 2017, 2020, 2023 and 2027, the Waikato Regional Council may, following service of notice on the consent holder, commence a review of this consent under section 128(1) of the Resource Management Act 1991, for the following purposes:
    - to review the effectiveness of the conditions of this resource consent in avoiding or mitigating any adverse effects on the environment from the exercise of this resource consent and if necessary to avoid, remedy or mitigate such effects by way of further or amended conditions; and/or
    - (ii) to review the adequacy of and the necessity for monitoring undertaken by the consent holder and/or
    - (iii) to review the appropriateness of the volumes specified within conditions 3 and 4 and, if necessary, to address any inappropriateness of these volumes by way of reducing these volumes.
    - (iv) To review the effectiveness of the conditions in managing effects during times of water shortage.
  - (2) period 1 July 2027 to 30 June 2029 the Waikato Regional Council may, following service of notice on the consent holder, commence a review of the conditions of this resource consent pursuant to section 128(1) of the Resource Management Act 1991 to take into account of any

change to the Waikato Regional Plan being proposed as a result of any catchment investigation undertaken by the Waikato Regional Council.

<u>Note:</u> Costs associated with any review of the conditions of this resource consent will be recovered from the consent holder in accordance with the provisions of section 36 of the Resource Management Act 1991.

12) The consent holder shall pay to the Waikato Regional Council any administrative charge fixed in accordance with section 36 of the Resource Management Act 1991, or any charge prescribed in accordance with regulations made under section 360 of the Resource Management Act.

In terms of s116 of the Resource Management Act 1991, this consent commences on 9 February 2015.

#### **Advice Notes - General**

- 1. In accordance with section 125 RMA, this consent shall lapse five (5) years after the date on which it was granted unless it has been given effect to before the end of that period.
- 2. This resource consent does not give any right of access over private or public property. Arrangements for access must be made between the consent holder and the property owner.
- 3. This resource consent is transferable to another owner or occupier of the land concerned, upon written notice to Waikato Regional Council, on the same conditions and for the same use as originally granted (s.134-137 RMA). The transfer of water, including changes of location, may occur as provided for in Chapter 3.4 of the Waikato Regional Plan, subject to the requirements of those rules.
- 4. The consent holder may apply to change the conditions of the resource consent under s.127 RMA.
- 5. The reasonable costs incurred by Waikato Regional Council arising from supervision and monitoring of this/these consents will be charged to the consent holder. This may include but not be limited to routine inspection of the site by Waikato Regional Council officers or agents, liaison with the consent holder, responding to complaints or enquiries relating to the site, and review and assessment of compliance with the conditions of consents.
- 6. Note that pursuant to s332 of the RMA 1991, enforcement officers may at all reasonable times go onto the property that is the subject of this consent, for the purpose of carrying out inspections, surveys, investigations, tests, measurements or taking samples.
- 7. If you intend to replace this consent upon its expiry, please note that an application for a new consent made at least 6 months prior to this consent's expiry gives you the right to continue exercising this consent after it expires in the event that your application is not processed prior to this consent's expiry.

# APPENDIX B LABORATORY ANALYSIS RESULTS



**Hill Laboratories** Limited 28 Duke Street Frankton 3204 Private Bag 3205 Hamilton 3240 New Zealand

T 0508 HILL LAB (44 555 22) Т

Page 1 of 4

- +64 7 858 2000
- Е mail@hill-labs.co.nz

W www.hill-laboratories.com

# **Certificate of Analysis**

| Client:  | WGANZ Pty Limited     | Lab No:           | 2719355          | DWAPv1 |
|----------|-----------------------|-------------------|------------------|--------|
| Contact: | Catherine Howell      | Date Received:    | 29-Sep-2021      |        |
|          | C/- WGANZ Pty Limited | Date Reported:    | 06-Oct-2021      |        |
|          | 4 Ash Street          | Quote No:         |                  |        |
|          | Central               | Order No:         |                  |        |
|          | Christchurch 8011     | Client Reference: | WGA211905        |        |
|          |                       | Submitted By:     | Catherine Howell |        |

#### Comple Type Aguaau

| Sample Type: Aqueous           |                                       |                             |                                     |                       |
|--------------------------------|---------------------------------------|-----------------------------|-------------------------------------|-----------------------|
|                                | Sample Name:                          | 72_6680 29-Sep-2021 1:58 pm | Guideline                           | Maximum<br>Acceptable |
| Lab Number:                    |                                       | 2719355.1                   | Value                               | Values (MAV)          |
| Routine Water + E.coli profile | Kit                                   |                             |                                     |                       |
| Escherichia coli               | MPN / 100mL                           | < 1                         | -                                   | < 1                   |
| Routine Water Profile          | ·                                     |                             |                                     |                       |
| Turbidity                      | NTU                                   | 40                          | < 2.5                               | -                     |
| pН                             | pH Units                              | 7.0                         | 7.0 - 8.5                           | -                     |
| Total Alkalinity               | g/m <sup>3</sup> as CaCO <sub>3</sub> | 89                          | -                                   | -                     |
| Free Carbon Dioxide            | g/m³ at 25°C                          | 16.4                        | -                                   | -                     |
| Total Hardness                 | g/m³ as CaCO <sub>3</sub>             | 42                          | < 200                               | -                     |
| Electrical Conductivity (EC)   | mS/m                                  | 19.2                        | -                                   | -                     |
| Electrical Conductivity (EC)   | µS/cm                                 | 192                         | -                                   | -                     |
| Approx Total Dissolved Salts   | g/m³                                  | 129                         | < 1000                              | -                     |
| Total Arsenic                  | g/m³                                  | 0.0074                      | -                                   | 0.01                  |
| Total Boron                    | g/m³                                  | 0.045                       | -                                   | 1.4                   |
| Total Calcium                  | g/m³                                  | 6.2                         | -                                   | -                     |
| Total Copper                   | g/m³                                  | < 0.00053                   | < 1                                 | 2                     |
| Total Iron                     | g/m³                                  | 7.9                         | < 0.2                               | -                     |
| Total Lead                     | g/m³                                  | < 0.00011                   | -                                   | 0.01                  |
| Total Magnesium                | g/m³                                  | 6.4                         | -                                   | -                     |
| Total Manganese                | g/m³                                  | 0.56                        | < 0.04 (Staining)<br>< 0.10 (Taste) | 0.4                   |
| Total Potassium                | g/m³                                  | 4.7                         | -                                   | -                     |
| Total Sodium                   | g/m³                                  | 25                          | < 200                               | -                     |
| Total Zinc                     | g/m³                                  | 0.020                       | < 1.5                               | -                     |
| Chloride                       | g/m³                                  | 7.4                         | < 250                               | -                     |
| Nitrate-N                      | g/m³                                  | < 0.05                      | -                                   | 11.3                  |
| Sulphate                       | g/m <sup>3</sup>                      | < 0.5                       | < 250                               | -                     |

Note: The Guideline Values and Maximum Acceptable Values (MAV) are taken from the publication 'Drinking-water Standards for New Zealand 2005 (Revised 2018)', Ministry of Health. Copies of this publication are available from https://www.health.govt.nz/publication/drinking-water-standards-new-zealand-2005-revised-2018

The Maximum Acceptable Values (MAVs) have been defined by the Ministry of Health for parameters of health significance and should not be exceeded. The Guideline Values are the limits for aesthetic determinands that, if exceeded, may render the water unattractive to consumers.

Note that the units  $g/m^3$  are the same as mg/L and ppm.



This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked \* or any comments and interpretations, which are not accredited.

#### pH/Alkalinity and Corrosiveness Assessment

The pH of a water sample is a measure of its acidity or basicity. Waters with a low pH can be corrosive and those with a high pH can promote scale formation in pipes and hot water cylinders.

The guideline level for pH in drinking water is 7.0-8.5. Below this range the water will be corrosive and may cause problems with disinfection if such treatment is used.

The alkalinity of a water is a measure of its acid neutralising capacity and is usually related to the concentration of carbonate, bicarbonate and hydroxide. Low alkalinities (25 g/m<sup>3</sup>) promote corrosion and high alkalinities can cause problems with scale formation in metal pipes and tanks.

The pH of this water is within the NZ Drinking Water Guidelines, the ideal range being 7.0 to 8.0. With the pH and alkalinity levels found, this water could be corrosive towards metal piping and fixtures.

#### Hardness/Total Dissolved Salts Assessment

The water contains a low amount of dissolved solids and would be regarded as being soft.

#### Nitrate Assessment

Nitrate-nitrogen at elevated levels is considered undesirable in natural waters as this element can cause a health disorder called methaemaglobinaemia. Very young infants (less than six months old) are especially vulnerable. The Drinking-water Standards for New Zealand 2005 (Revised 2018) suggests a maximum permissible level of 11.3 g/m<sup>3</sup> as Nitrate-nitrogen (50 g/m<sup>3</sup> as Nitrate).

Nitrate-nitrogen was not found in this water.

#### **Boron Assessment**

Boron may be present in natural waters and if present at high concentrations can be toxic to plants. Boron was found at a low level in this water but would not give any cause for concern.

#### **Metals Assessment**

Iron and manganese are two problem elements that commonly occur in natural waters. These elements may cause unsightly stains and produce a brown/black precipitate. Iron is not toxic but manganese, at concentrations above 0.5 g/m<sup>3</sup>, may adversely affect health. At concentrations below this it may cause stains on clothing and sanitary ware.

Iron was found in this water at a very high level. Manganese was found in this water at a high level. Treatment to remove iron and/or manganese will be required.

#### **Bacteriological Tests**

The NZ Drinking Water Standards state that there should be no Escherichia coli (E coli) in water used for human consumption. The presence of these organisms would indicate that other pathogens of faecal origin may be present. Results obtained for Total Coliforms are only significant if the sample has not also been tested for E coli.

Escherichia coli was not detected in this sample.

#### **Final Assessment**

The parameters Turbidity, Total Iron and Total Manganese did NOT meet the guidelines laid down in the publication 'Drinking-water Standards for New Zealand 2005 (Revised 2018)' published by the Ministry of Health for water which is suitable for drinking purposes.

# Summary of Methods

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively simple matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis. A detection limit range indicates the lowest and highest detection limits in the associated suite of analytes. A full listing of compounds and detection limits are available from the laboratory upon request. Unless otherwise indicated, analyses were performed at Hill Laboratories, 28 Duke Street, Frankton, Hamilton 3204.

| Sample Type: Aqueous         |                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |           |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------|
| Test                         | Method Description                                                                                                                                                                                                                                                                                                                                                                                         | Default Detection Limit                   | Sample No |
| Routine Water Profile        |                                                                                                                                                                                                                                                                                                                                                                                                            | -                                         | 1         |
| Filtration, Unpreserved      | Sample filtration through 0.45µm membrane filter.                                                                                                                                                                                                                                                                                                                                                          | -                                         | 1         |
| Total Digestion              | Nitric acid digestion. APHA 3030 E (modified) 23rd ed. 2017.                                                                                                                                                                                                                                                                                                                                               | -                                         | 1         |
| Turbidity                    | Analysis by Turbidity meter. APHA 2130 B 23 <sup>rd</sup> ed. 2017 (modified).                                                                                                                                                                                                                                                                                                                             | 0.05 NTU                                  | 1         |
| рН                           | pH meter. APHA 4500-H <sup>+</sup> B 23 <sup>rd</sup> ed. 2017. Note: It is not<br>possible to achieve the APHA Maximum Storage<br>Recommendation for this test (15 min) when samples are<br>analysed upon receipt at the laboratory, and not in the field.<br>Samples and Standards are analysed at an equivalent laboratory<br>temperature (typically 18 to 22 °C). Temperature compensation<br>is used. | 0.1 pH Units                              | 1         |
| Total Alkalinity             | Titration to pH 4.5 (M-alkalinity), autotitrator. APHA 2320 B (modified for Alkalinity <20) 23 <sup>rd</sup> ed. 2017.                                                                                                                                                                                                                                                                                     | 1.0 g/m <sup>3</sup> as CaCO <sub>3</sub> | 1         |
| Free Carbon Dioxide          | Calculation: from alkalinity and pH, valid where TDS is not >500 mg/L and alkalinity is almost entirely due to hydroxides, carbonates or bicarbonates. APHA 4500-CO <sub>2</sub> D 23 <sup>rd</sup> ed. 2017.                                                                                                                                                                                              | 1.0 g/m³ at 25°C                          | 1         |
| Total Hardness               | Calculation from Calcium and Magnesium. APHA 2340 B 23 <sup>rd</sup> ed. 2017.                                                                                                                                                                                                                                                                                                                             | 1.0 g/m <sup>3</sup> as CaCO <sub>3</sub> | 1         |
| Electrical Conductivity (EC) | Conductivity meter, 25°C. APHA 2510 B 23 <sup>rd</sup> ed. 2017.                                                                                                                                                                                                                                                                                                                                           | 0.1 mS/m                                  | 1         |
| Electrical Conductivity (EC) | Conductivity meter, 25°C. APHA 2510 B 23rd ed. 2017.                                                                                                                                                                                                                                                                                                                                                       | 1 µS/cm                                   | 1         |
| Approx Total Dissolved Salts | Calculation: from Electrical Conductivity.                                                                                                                                                                                                                                                                                                                                                                 | 2 g/m <sup>3</sup>                        | 1         |
| Total Arsenic                | Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 23 <sup>rd</sup> ed. 2017 / US EPA 200.8.                                                                                                                                                                                                                                                                                                          | 0.0011 g/m <sup>3</sup>                   | 1         |
| Total Boron                  | Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 23 <sup>rd</sup> ed. 2017.                                                                                                                                                                                                                                                                                                                         | 0.0053 g/m <sup>3</sup>                   | 1         |
| Total Calcium                | Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 23 <sup>rd</sup> ed. 2017.                                                                                                                                                                                                                                                                                                                         | 0.053 g/m <sup>3</sup>                    | 1         |
| Total Copper                 | Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 23 <sup>rd</sup> ed. 2017 / US EPA 200.8.                                                                                                                                                                                                                                                                                                          | 0.00053 g/m <sup>3</sup>                  | 1         |
| Total Iron                   | Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 23 <sup>rd</sup> ed. 2017.                                                                                                                                                                                                                                                                                                                         | 0.021 g/m <sup>3</sup>                    | 1         |
| Total Lead                   | Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 23 <sup>rd</sup> ed. 2017 / US EPA 200.8.                                                                                                                                                                                                                                                                                                          | 0.00011 g/m <sup>3</sup>                  | 1         |
| Total Magnesium              | Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 23 <sup>rd</sup> ed. 2017.                                                                                                                                                                                                                                                                                                                         | 0.021 g/m <sup>3</sup>                    | 1         |
| Total Manganese              | Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 23 <sup>rd</sup> ed. 2017 / US EPA 200.8.                                                                                                                                                                                                                                                                                                          | 0.00053 g/m <sup>3</sup>                  | 1         |
| Total Potassium              | Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 23 <sup>rd</sup> ed. 2017.                                                                                                                                                                                                                                                                                                                         | 0.053 g/m <sup>3</sup>                    | 1         |
| Total Sodium                 | Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 23 <sup>rd</sup> ed. 2017.                                                                                                                                                                                                                                                                                                                         | 0.021 g/m <sup>3</sup>                    | 1         |
| Total Zinc                   | Nitric acid digestion, ICP-MS, trace level. APHA 3125 B 23 <sup>rd</sup> ed. 2017 / US EPA 200.8.                                                                                                                                                                                                                                                                                                          | 0.0011 g/m <sup>3</sup>                   | 1         |
| Chloride                     | Filtered sample. Ion Chromatography. APHA 4110 B (modified) 23 <sup>rd</sup> ed. 2017.                                                                                                                                                                                                                                                                                                                     | 0.5 g/m <sup>3</sup>                      | 1         |
| Nitrate-N                    | Filtered sample. Ion Chromatography. APHA 4110 B (modified) 23 <sup>rd</sup> ed. 2017.                                                                                                                                                                                                                                                                                                                     | 0.05 g/m <sup>3</sup>                     | 1         |
| Sulphate                     | Filtered sample. Ion Chromatography. APHA 4110 B (modified) 23 <sup>rd</sup> ed. 2017.                                                                                                                                                                                                                                                                                                                     | 0.5 g/m <sup>3</sup>                      | 1         |
| Escherichia coli             | MPN count using Colilert 18 (Incubated at 35°C for 18 hours) and 97 wells. APHA 9223 B 23 <sup>rd</sup> ed. 2017.                                                                                                                                                                                                                                                                                          | 1 MPN / 100mL                             | 1         |

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Testing was completed between 30-Sep-2021 and 06-Oct-2021. For completion dates of individual analyses please contact the laboratory.

Samples are held at the laboratory after reporting for a length of time based on the stability of the samples and analytes being tested (considering any preservation used), and the storage space available. Once the storage period is completed, the samples are discarded unless otherwise agreed with the customer. Extended storage times may incur additional charges.

This certificate of analysis must not be reproduced, except in full, without the written consent of the signatory.

Carole Rooder- Canoll

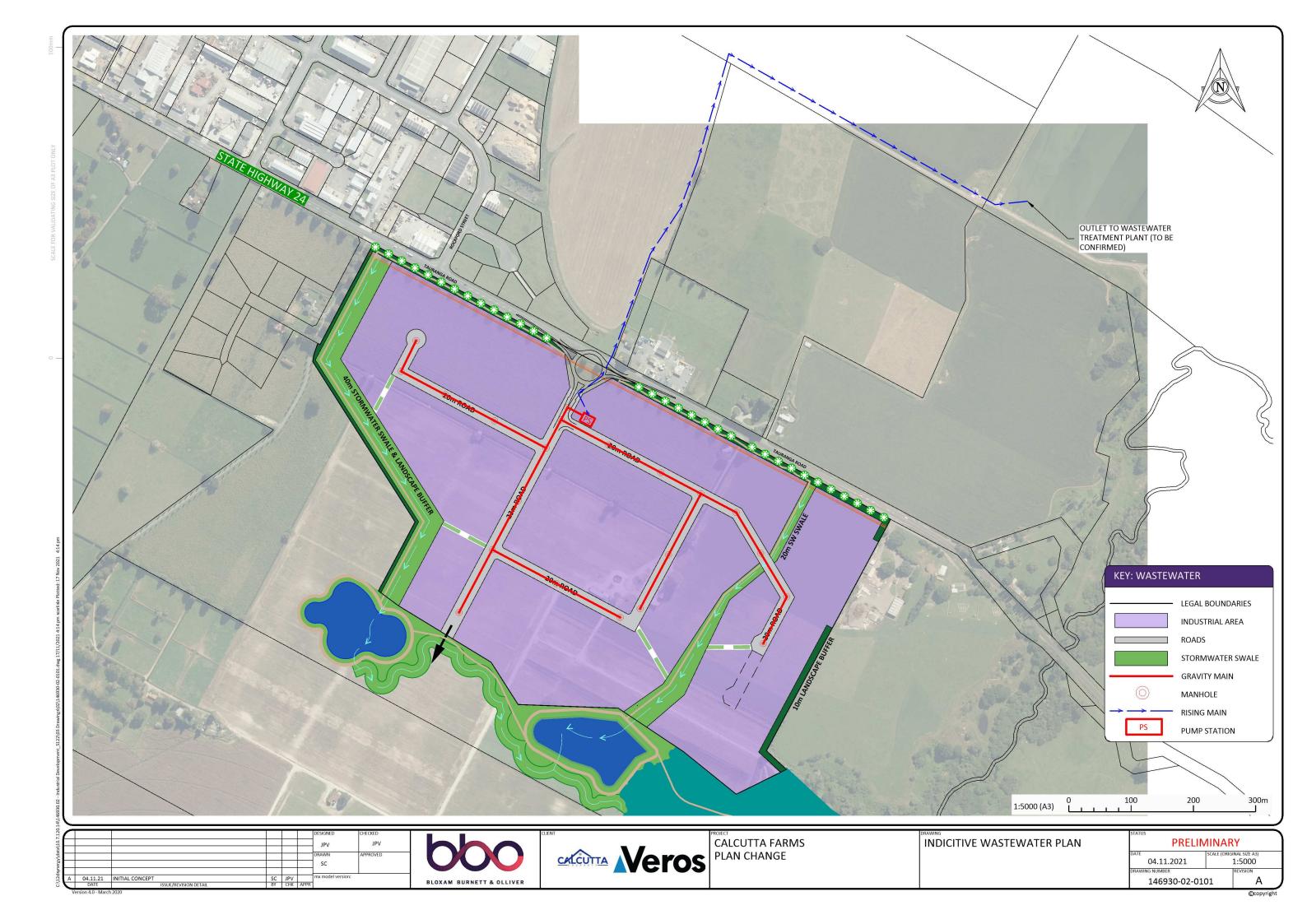
Carole Rodgers-Carroll BA, NZCS Client Services Manager - Environmental

# APPENDIX C BORE LOGS

| Deptl | h <b>(m)</b> | Dradominant Lithelesias        | Cooleries Unit  | Aquifer    |
|-------|--------------|--------------------------------|-----------------|------------|
| From  | То           | Predominant Lithologies        | Geological Unit | Definition |
| 0     | 3.5          | Brown clay                     |                 | Aquitard   |
| 3.5   | 22.5         | Sands pumice                   |                 | Aquifor    |
| 22.5  | 25.3         | Heavy gravel layer             |                 | Aquifer    |
| 25.3  | 29           | Grey clay                      |                 |            |
| 29    | 29.6         | Blue sandy silt                |                 | Aquitard   |
| 29.6  | 32.4         | Grey silt                      |                 |            |
| 32.4  | 34           | Sandy pumice                   |                 |            |
| 34    | 35           | Sandy pumice gravel            |                 |            |
| 35    | 37.5         | Green gravel, silty sand       |                 | Aquifer    |
| 37.5  | 44.6         | Green and grey silty sand      |                 |            |
| 44.6  | 47.6         | Green gravel, sand and pumice  | Tauranga Group  |            |
| 47.6  | 48.6         | Green silt layers              |                 | Aquitard   |
| 48.6  | 49           | Sand, gravel, pumice           |                 | Aquifor    |
| 49    | 55           | Sand, gravel, pumice with silt |                 | Aquifer    |
| 55    | 56.6         | Brown silt pumice, gravel sand |                 | Aquitard   |
| 56.6  | 57.6         | Green sand, gravel             |                 | Aquifer    |
| 57.6  | 58.6         | Green sand, silt               |                 | Aquitard   |
| 58.6  | 59.6         | Green sand, gravel             |                 | Aquifer    |
| 59.6  | 65.6         | Green sand, silt               |                 | Aquitard   |
| 65.6  | 72.5         | Sand pumice gravel             |                 | Aquifer    |
| 72.5  | 73.5         | Blue silt                      |                 | Aquitard   |

# Geological Log for Java Bore (72\_6680).

# Geological Log for Bore 72\_7181.


| Dept | h (m) | Brodominant Lithologias | Geological Unit | Aquifer    |
|------|-------|-------------------------|-----------------|------------|
| From | То    | Predominant Lithologies |                 | Definition |
| 0    | 27.5  | Sand, pumice            |                 | Aquifor    |
| 27.5 | 30    | Brown sands, gravels    |                 | Aquifer    |
| 30   | 33    | Brown silts             |                 | Aquitard   |
| 33   | 40    | Brown sands, gravels    |                 | Aquifer    |
| 40   | 41    | Brown silts             | Tauranga Group  | Aquitard   |
| 41   | 48.1  | Brown sands, gravels    |                 | Aquifer    |
| 48.1 | 48.7  | Brown silts             |                 | Aquitard   |
| 48.7 | 54    | Brown sands, gravels    |                 | Aquifer    |
| 54   | 57    | White green clay        |                 | Aquitard   |

Appendix C – Water and wastewater indicative layouts



|                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TE HIGHNAY 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Renzo                                                                                                                                               | CONNECTION FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Transansa nono |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|                                                                                                                                                     | CONNECTION FROM<br>BOREHOLE, LOCATION<br>TO BE CONFIRMED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| 100                                                                                                                                                 | BORE LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Source Stores and Stor | Aller ROAD     | 30mmore 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |
|                                                                                                                                                     | POTENTIAL WATER<br>TREATMENT PLANT<br>LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TREES SUITAGE & LANDINGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | an cutres      | Meno Carlo C |                                         |
|                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20m Superior                            |
|                                                                                                                                                     | STORMWATER POND TO<br>POSSIBLY FUNCTION AS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Caronaux       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|                                                                                                                                                     | RESERVOIR FOR FIRE FIGHTING<br>REQUIREMENTS. ALTERNATIVELY<br>TANKING AREA TO BE PROVIDED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Join LANDSCAPE BUTTER                   |
|                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -710                                    |
|                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
|                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|                                                                                                                                                     | DESIGNED [CHECKED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | PROJECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Drawing                                 |
| B         26.11.21         MINOR AMENDMENT TO KEY           A         04.11.21         INITIAL CONCEPT           DATE         ISSUE/REVISION DETAIL | Image: Sector of the | bloxam Burnett & Olliver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INDICATIVE                              |





Appendix D – Utility providers correspondence



## Jean-Pierre Velloen

| From:           | Resource Consents <resourceconsents@powerco.co.nz></resourceconsents@powerco.co.nz> |
|-----------------|-------------------------------------------------------------------------------------|
| Sent:           | Thursday, 18 November 2021 10:30 am                                                 |
| To:             | Jean-Pierre Velloen                                                                 |
| Cc:             | Malcolm Rhodes; Jethro Pease; Customer Works Eastern                                |
| Subject:        | RE: Calcutta Farm - Employment Zone                                                 |
| Attachments:    | Matamata Employment Zone_Structure Plan_211011_LR.pdf; Calcutta Industrial.png      |
| Importance:     | High                                                                                |
| Follow Up Flag: | Follow up                                                                           |
| Flag Status:    | Flagged                                                                             |

Our privacy policy is <u>here</u>. It tells you how we may collect, hold, use and share personal information.

#### Hi Jean-Pierre

Sorry with 800+ applications per month for our team of three, it does take time to respond.

Please see official response below.

BBO jpvellloen@bbo.co.nz

Att: Jean-Pierre

#### Electricity Supply to: Calcutta Farms, Tauranga Road, Matamata – Employment Zone.

The existing 11kV line that runs parallel to this development, is fed from the Banks Street feeder (CB2) out of the Tower Rd Substation. The new development will need to be connected from the Taihoa Feeder (CB4) as noted below and in the attached screen shot.

- 1. Supply from Taihoa feeder (currently not highly loaded) and carved off from the Te Poi feeder last year.
- 2. Close IP577 normal open point tie between Banks St and Taihoa feeder. Install a new open point tie between Banks St and Taihoa (at either pole 248837 or 248836).
- 3. Extend Taihoa feeder south through industrial (feeder strength cabling to be used and ducting to the boundary edge for future extension).
- 4. Use Bent St feeder for the zoned industrial east of Rockford St.

This would be on top of the required reticulation of this development.

NZECP:34 obligations will need to be adhered to, for building and excavating near overhead HV lines, poles and support structures, driveway entrances shall not be closer than 1m from roadside poles.

An easement in gross in favour of Powerco will be required for any works located within private property.

There will be a cost to complete this work.

Please contact a Powerco Approved Contractor for a price and design. Conditions may apply. These conditions will be advised as part of the quotation from the Contractor.

Standard connection fees will apply once this upgrade work has been completed.

Please be advised the information contained herein, is current as of the date of this letter, but could be subject to change, as changes on the load changes on the Network over the coming weeks, months and years to completion.

Kind Regards Janice

Customer Works Team - Eastern POWERCO Web <u>www.powerco.co.nz</u>

f 💟 in 🛗

Please consider the environment before printing this e-mail

From: Jean-Pierre Velloen <jpvelloen@bbo.co.nz>
Sent: Thursday, 18 November 2021 10:05 am
To: Customer Works Eastern <CustomerWorksEastern@powerco.co.nz>
Cc: Malcolm Rhodes <malcolm.rhodes@northpower.com>
Subject: RE: Calcutta Farm - Employment Zone

#### [EXTERNAL EMAIL] DO NOT CLICK links or attachments unless you recognize the sender and know the content is safe.

#### Thanks Janice

A update on the status would be appreciated as the resource consent will be lodged on Monday. Having a letter form Powerco to summarise the high level upgrades would be appreciated before this date. Comms were able to send us their details a couple of weeks ago.

Regards



Jean-Pierre Velloen LAND DEVELOPMENT ENGINEER (CIVIL) BEng(Civil), CPEng, IntPE(NZ), CMEngNZ Level 4, 18 London Street, PO Box 9041, Hamilton 3240 R +64 7 838 0144 D +64 7 838 6041 M +64 27 333 6626 E jpvelloen@bbo.co.nz W www.bbo.co.nz

If you wish to send us a large file, please click the following link: https://www.sendthisfile.com

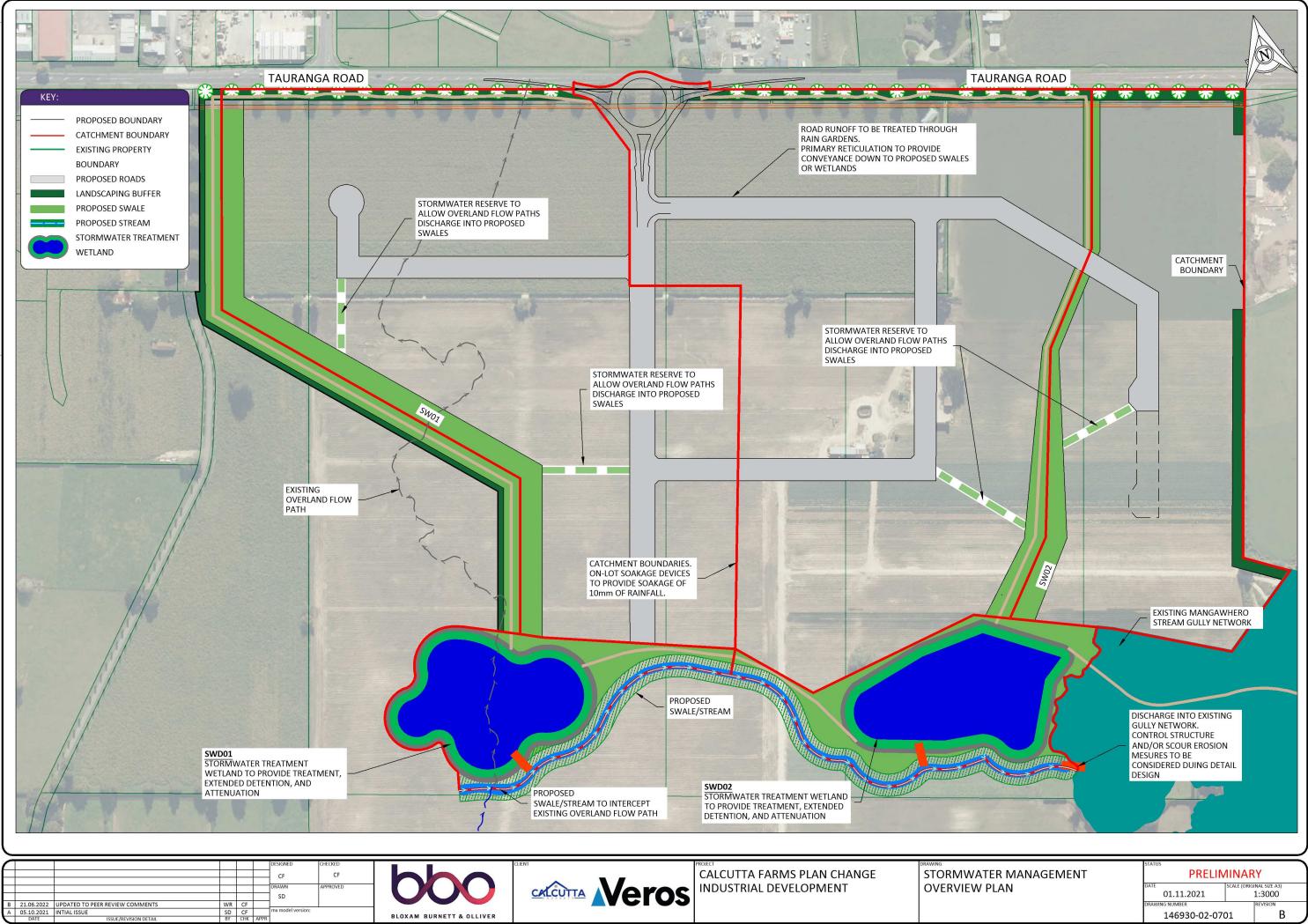
This e-mail is a confidential communication between Bloxam Burnett & Olliver Ltd and the intended recipient. If it has been received by you in error, please notify us by return e-mail immediately and delete the original message. Thank you for your co-operation.

From: Customer Works Eastern <<u>CustomerWorksEastern@powerco.co.nz</u>>
Sent: Monday, 15 November 2021 8:43 am
To: Jean-Pierre Velloen <jpvelloen@bbo.co.nz</pre>





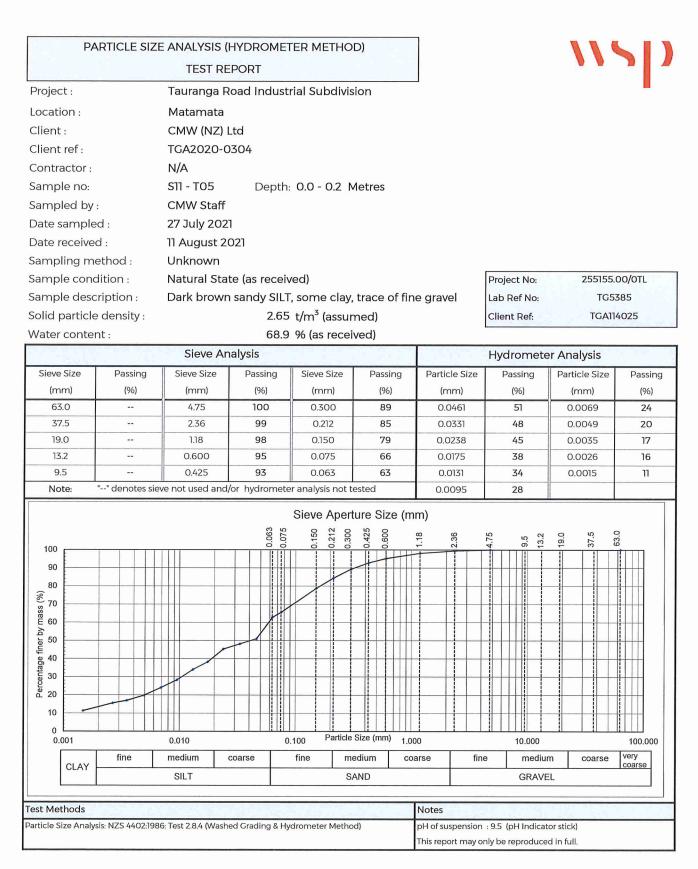
#### Ref: Calcutta Farms Limited – Employment Zone


JP Velloen c/o Bloxam Burnett & Olliver Ltd

2<sup>ND</sup> November 2021

- Ultrafast Fibre Limited (UFF) confirms that a UFF telecommunications network is achievable, providing a commercial agreement is reached between the Developer and Ultrafast Fibre. Upon approval of this agreement, UFF will undertake to become the telecommunications operator of the telecommunications reticulation in the proposed public roads for Calcutta Farms Limited (the "Developer"), to provide network connections to all lots in the Subdivision (the "Reticulation").
- 2. The Reticulation will be installed in accordance with:
  - (a) the requirements and standards set by the Matamata-Piako District Council and advised to UFF via the Council's website; and
  - (b) the requirements of the Telecommunications Act 2001 and all other applicable laws, regulations and codes (as amended).
- 3. The Reticulation will be installed by our nominated contractor to UFF's satisfaction.
- 4. UFF will be the owner, operator and maintainer of the Reticulation.
- 5. One or more retail service providers will be available to supply telecommunications services over the completed Reticulation when service is available, provided that UFF shall not be responsible if the retail service provider's offer to supply such telecommunications services or the number of such providers varies from time to time.

Yours Sincerely, Jonathan Campbell Business Development Solutions Manager Ultrafast Fibre Appendix E – Stormwater indicative layout plan






| R MANAGEMENT | PRELIMINARY                    |                                    |  |   |
|--------------|--------------------------------|------------------------------------|--|---|
| _AN          | DATE 01.11.2021                | SCALE (ORIGINAL SIZE A3)<br>1:3000 |  |   |
|              | DRAWING NUMBER<br>146930-02-07 |                                    |  | J |

**Appendix F – WSP laboratory sieving test results** 





Date Tested:

14 September 2021

Date Reported:

30 September 2021

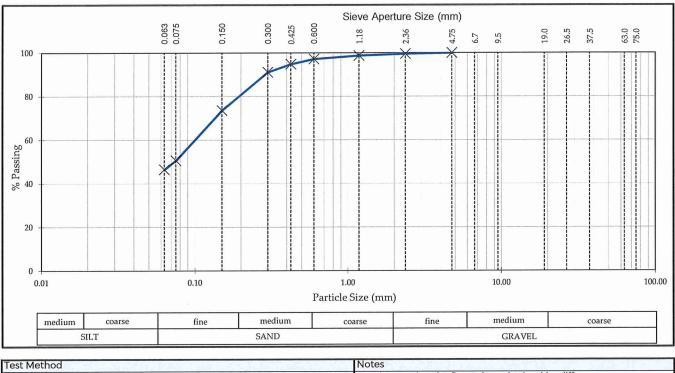
IANZ Approved Signatory

Designation : Date : Laboratory Manager 30 September 2021 PCCREDITED

All tests reported herein have been performed in accordance with the laboratory's scope of accreditation

Page 5 of 6

PF-LAB-100 (11/07/2020)


WSP Tauranga (Chadwick Rd) Quality Management Systems Certified to ISO 9001

278 Chadwick Rd PO Box 9057, 3142, Tauranga, New Zealand

#### PARTICLE SIZE DISTRIBUTION TEST REPORT

| Project :            | Tauranga Road Indus    | trial Subdivision |               |        |
|----------------------|------------------------|-------------------|---------------|--------|
| Location :           | Matamata               |                   |               |        |
| Client :             | CMW (NZ) Ltd           |                   |               |        |
| Contractor :         | N/A                    |                   |               |        |
| Sampled by :         | CMW Staff              |                   |               |        |
| Date sampled :       | 27 July 2021           |                   |               |        |
| Sampling method :    | Unknown                |                   |               |        |
| Sample description : | Light greyish brown s  | andy SILT         |               |        |
| Sample condition     | Natural State (as rece | ived)             |               |        |
| Sample no :          | S01-T02                | Project No :      | 255155.00/OTL |        |
| Depth :              | 1.8 - 2.2m             | Lab Ref No :      | TG5385        | 316 A. |
| Date received :      | 11 August 2021         | Client Ref No :   | TGA2020-0304  |        |

| Sieve Analysis |           |           |           |           |           |           |           |
|----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Size (mm)      | % Passing | Size (mm) | % Passing | Size (mm) | % Passing | Size (mm) | % Passing |
| 75.00          | -         | 19.00     | -         | 2.36      | 100       | 0.300     | 91        |
| 63.00          | -         | 9.50      |           | 1.18      | 99        | 0.150     | 74        |
| 37.50          | .=        | 6.70      | -         | 0.60      | 97        | 0.075     | 51        |
| 26.50          | -         | 4.75      | 100       | 0.425     | 95        | 0.063     | 46        |

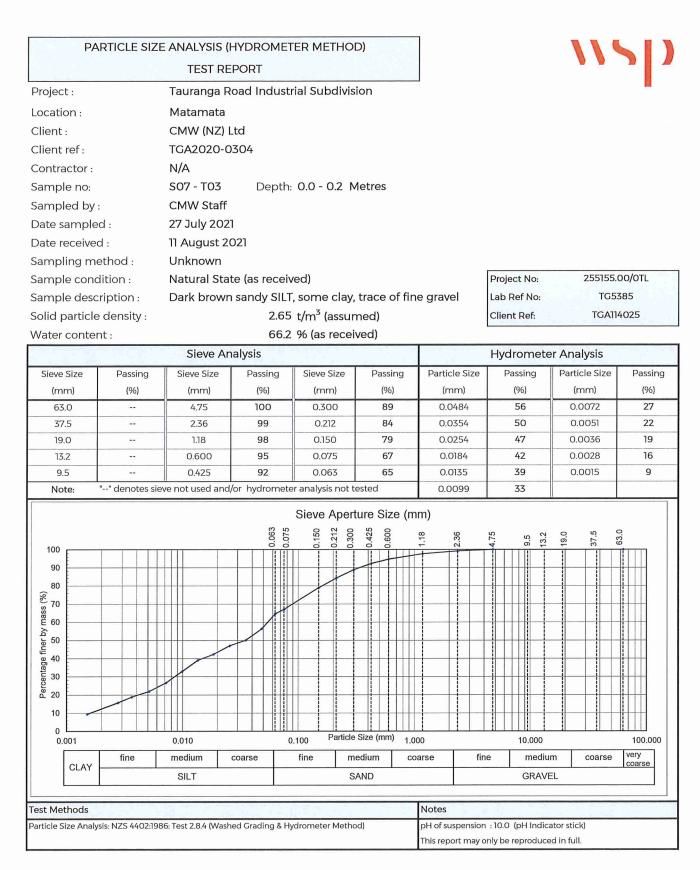


| Test Method                |                            | Notes                                                     |
|----------------------------|----------------------------|-----------------------------------------------------------|
| Particle Size Distribution | NZS 4402 : 1986 Test 2.8.1 | Fraction passing the finest sieve obtained by difference. |
|                            |                            | This report may only be reproduced in full.               |
|                            |                            |                                                           |

Date tested : 14 September 2021 Date reported : 30 September 2021

IANZ Approved Signatory




All tests reported herein have been performed in accordance with the laboratory's scope of accreditation

Designation : Senior Civil Engineering Technician Date : 30 September 2021

PF-LAB-099 (11/07/2020)

WSP Tauranga (Chadwick Rd) Quality Management Systems Certified to ISO 9001 278 Chadwick Rd PO Box 9057, 3142, Tauranga, New Zealand Page 2 of 6

115



Date Tested:

9 September 2021 30 September 2021

Date Reported:

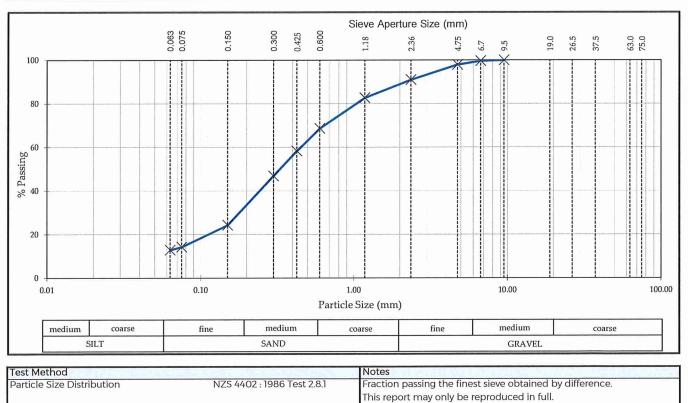
IANZ Approved Signatory

Designation : Date : Laboratory Manager 30 September 2021



All tests reported herein have been performed in accordance with the laboratory's scope of accreditation

Page 3 of 6


PF-LAB-100 (11/07/2020)

278 Chadwick Rd PO Box 9057, 3142, Tauranga, New Zealand

#### PARTICLE SIZE DISTRIBUTION TEST REPORT

| Project :            | Tauranga Road Indus    | trial Subdivision        |               |  |  |
|----------------------|------------------------|--------------------------|---------------|--|--|
| Location :           | Matamata               |                          |               |  |  |
| Client :             | CMW (NZ) Ltd           |                          |               |  |  |
| Contractor :         | N/A                    |                          |               |  |  |
| Sampled by :         | CMW Staff              |                          |               |  |  |
| Date sampled :       | 27 July 2021           |                          |               |  |  |
| Sampling method :    | Unknown                |                          |               |  |  |
| Sample description : | Light greyish brown S  | AND, some silt & minor g | ravel         |  |  |
| Sample condition     | Natural State (as rece | ived)                    |               |  |  |
| Sample no :          | S07-T04                | Project No :             | 255155.00/OTL |  |  |
| Depth :              | 1.8 - 2.2m             | Lab Ref No :             | TG5385        |  |  |
| Date received :      | 11 August 2021         | Client Ref No :          | TGA2020-0304  |  |  |

| Sieve Analysis |           |           |           |           |           |           |           |
|----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Size (mm)      | % Passing | Size (mm) | % Passing | Size (mm) | % Passing | Size (mm) | % Passing |
| 75.00          | -         | 19.00     | -         | 2.36      | 91        | 0.300     | 47        |
| 63.00          | -         | 9.50      | 100       | 1.18      | 83        | 0.150     | 24        |
| 37.50          | -         | 6.70      | 100       | 0.60      | 69        | 0.075     | 14        |
| 26.50          | -         | 4.75      | 98        | 0.425     | 58        | 0.063     | 13        |



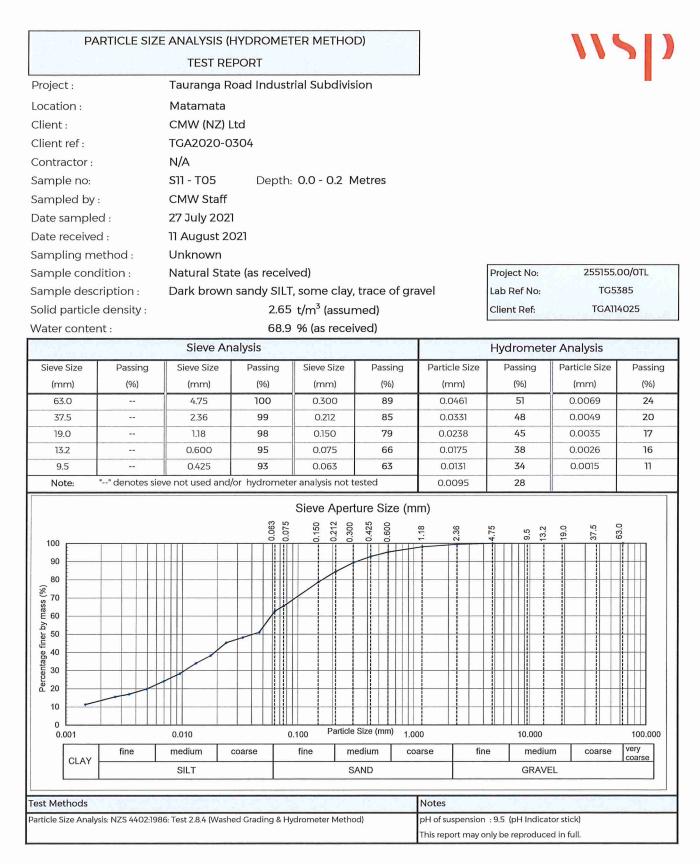
Date tested : 14 September 2021 Date reported : 30 September 2021

IANZ Approved Signatory

Designation : Senior Civil Engineering Technician Date : 30 September 2021



All tests reported herein have been performed in accordance with the laboratory's scope of accreditation


Page 4 of 6

115

WSP

PF-LAB-099 (11/07/2020)

Tauranga (Chadwick Rd) Quality Management Systems Certified to ISO 9001 278 Chadwick Rd PO Box 9057, 3142, Tauranga, New Zealand



Date Tested:

14 September 2021

Date Reported:

30 September 2021

IANZ Approved Signatory Designation :

Laboratory Manager 30 September 2021



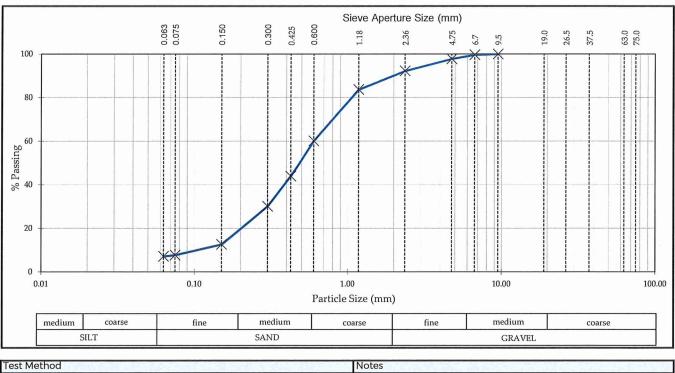
All tests reported herein have been performed in accordance with the laboratory's scope of accreditation

Page 5 of 6

PF-LAB-100 (11/07/2020)

WSP

Date :


Tauranga (Chadwick Rd) Quality Management Systems Certified to ISO 9001

278 Chadwick Rd PO Box 9057, 3142, Tauranga, New Zealand

| PARTICLE SIZE DISTRIBUTION |  |
|----------------------------|--|
| TEST REPORT                |  |

| Project :            | Tauranga Road Indust                               | rial Subdivision |               |  |
|----------------------|----------------------------------------------------|------------------|---------------|--|
| Location :           | Matamata                                           |                  |               |  |
| Client :             | CMW (NZ) Ltd                                       |                  |               |  |
| Contractor :         | N/A                                                |                  |               |  |
| Sampled by :         | CMW Staff                                          |                  |               |  |
| Date sampled :       | 27 July 2021                                       |                  |               |  |
| Sampling method :    | Unknown                                            |                  |               |  |
| Sample description : | Light greyish brown SAND, minor silt & fine gravel |                  |               |  |
| Sample condition     | Natural State (as receiv                           | ved)             |               |  |
| Sample no :          | S11-T06                                            | Project No :     | 255155.00/0TL |  |
| Depth :              | 1.8 - 2.2m                                         | Lab Ref No :     | TG5385        |  |
| Date received :      | 11 August 2021                                     | Client Ref No :  | TGA2020-0304  |  |

| Sieve Analysis |           |           |           |           |           |           |           |
|----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Size (mm)      | % Passing | Size (mm) | % Passing | Size (mm) | % Passing | Size (mm) | % Passing |
| 75.00          | -         | 19.00     | -         | 2.36      | 92        | 0.300     | 30        |
| 63.00          | -         | 9.50      | 100       | 1.18      | 84        | 0.150     | 13        |
| 37.50          | -         | 6.70      | 100       | 0.60      | 60        | 0.075     | 8         |
| 26.50          | -         | 4.75      | 98        | 0.425     | 44        | 0.063     | 7         |



| Test Method                |                            | Notes                                                     |
|----------------------------|----------------------------|-----------------------------------------------------------|
| Particle Size Distribution | NZS 4402 : 1986 Test 2.8.1 | Fraction passing the finest sieve obtained by difference. |
|                            |                            | This report may only be reproduced in full.               |
|                            |                            |                                                           |

Date tested : 14 September 2021 Date reported : 30 September 2021

IANZ Approved Signatory

tory



All tests reported herein have been performed in accordance with the laboratory's scope of accreditation

Designation : Senior Civil Engineering Technician Date : 30 September 2021

PF-LAB-099 (11/07/2020)

WSP Tauranga (Chadwick Rd) Quality Management Systems Certified to ISO 9001 278 Chadwick Rd PO Box 9057, 3142, Tauranga, New Zealand Page 6 of 6

115

**Appendix G – Permeability testing results from CMW Geoscience** 





30 August 2021

Document Ref: TGA2020-0304AD Rev 0

Calcutta Farms Limited 166 Heights Road Pukekohe 2676

Attention: Matt Carnachan

Dear Matt

# RE: FACTUAL SOIL PERMEABILITY TESTING FOR PROPOSED INDUSTRIAL SUBDIVISION 194 TAURANGA ROAD (SH24), MATAMATA

## **1** INTRODUCTION

CMW Geosciences (CMW) was appointed by Veros Property Group (Veros) on behalf of Calcutta Farms Limited to carry out onsite permeability testing to determine representative seepage rates for the near surface soils at the proposed Tauranga Road industrial subdivision in Matamata.

It is understood concentrated stormwater flows generated from within the subdivision may discharge to soakage parks, designed by Bloxam Burnett and Olliver (BBO).

The scope of work and associated terms and conditions of our engagement were detailed in our services proposal letter dated 26 March 2021 (ref. TGA2020-0304AA Rev 2).

# 2 SCOPE OF WORK

As detailed in our above referenced services proposal letter, the scope of work to be conducted by CMW is defined as follows:

- The drilling of 12 hand augers to undertake soakage testing down to depths of 2.0m and 4.0m below ground level and determine permeability rates for future soakage design;
- Calculate representative permeability rates for the various site soils;
- Compile a letter providing details around soakage test methodology and providing permeability rates for site soils, depths of tests and basic soil logs.

### **3 FIELD INVESTIGATION**

The field investigation was carried out between 14 and 27 July 2021. All fieldwork was carried out under the direction of CMW Geosciences in general accordance with the NZGS guidance<sup>1</sup> and Matamata Piako District Council (MPDC) Soakage Design Procedures and Guidelines.

The number of soakage tests undertaken was less than that prescribed in the MPDC guidance, on the basis that if the test results did not show great variation then the lower number of tests may be acceptable to Council. If the results showed great variation, then further testing may be required to determine representative rates for design.

From previous investigation findings the anticipated near surface soil profile was a veneer of silty deposits over sandy deposits. The testing strategy adopted was therefore to target the deeper and possibly more permeable sand layer at the majority of the test locations, with a smaller number of tests targeted at the upper silt soils which were expected to be of lower permeability.

The scope of fieldwork carried out was as follows:

- Twelve hand auger boreholes, denoted HA02, HA04, HA06, HA07, HA08, HA09, HA13, HA16, HA18, HA19, HA22 and HA23, were drilled using a 50mm diameter auger to depths of up to 4.0m below existing ground levels to visually observe the near surface soil profile and for permeability testing purposes. The boreholes were logged by CMW Geologists in general accordance with NZGS guidelines<sup>2</sup>. Engineering logs of the hand auger boreholes are attached;
- Twelve falling head permeability tests (referred to as S01 to S12) were carried out in HA02, HA04, HA06, HA07, HA08, HA09, HA13, HA16, HA18, HA19, HA22 and HA23 respectively to depths of 2.0m to 4.0m below existing ground levels. The holes were augered down to the targeted test strata/ depth and permeability testing was carried out. Following completion of the test the hand auger boreholes were then advanced down to deeper levels in order to observe the deeper level soil profile as part of the overall site investigation.
- The permeability tests in HA07, HA08, HA09, HA16, HA18 and HA23 (S06, S04, S03, S10, S09, and S12 respectively) targeted the shallow upper silt only. Results of the falling head permeability tests are attached.
- The permeability tests undertaken within HA02, HA04, HA06, HA13, HA19, and HA22 (S01, S02, S05, S07, S08 and S11 respectively) targeted the underlying sand unit. Results of the falling head permeability tests are attached.
- The 50mm diameter HA holes were reamed out to 100mm using a larger auger head. A slotted 80mm diameter PVC pipe was installed to the base of the holes and the holes were pre-soaked prior to undertaking the permeability tests. Following pre-soaking, the holes were filled with water and the rate of water level fall over time was monitored. Test results were used to calculate the soakage rates of the soil in accordance with the MPDC Soakage Design Procedures and Guidelines.
- Constant head permeability testing was also undertaken in HA02, HA09, HA13, HA19, and HA22 to
  provide a comparison with falling head permeability test results. In this case a flow of water maintained
  to provide a constant head of water. Test results were used to calculate the hydraulic conductivity (k) of
  the soil using the constant head method. Results of the constant head permeability tests are attached.

The approximate locations of the respective augers referred to above are shown on Drawing 01.

<sup>&</sup>lt;sup>1</sup> NZ Geotechnical Society et al, New Zealand Ground Investigation Specification, Vol 1, April 2017

<sup>&</sup>lt;sup>2</sup> NZ Geotechnical Society (2005), Field Description of Soil and Rock, Guideline for the field classification and description of soil and rock for engineering purposes.

# 4 PERMEABILITY TEST RESULTS

The results of the falling and constant head permeability tests are appended and have been summarised in Tables 1 and 2 below.

| Table 1: Summary of Falling Head Permeability Test Results |               |                                   |                                    |                                       |
|------------------------------------------------------------|---------------|-----------------------------------|------------------------------------|---------------------------------------|
| Test Location                                              | Depth of hole | Test targeting silt or sand layer | Average soakage<br>rate (L/min/m²) | Hydraulic Conductivity<br>(k) (m/sec) |
| S01(HA02)                                                  | 4.0           | Sand                              | 2.9                                | 4.8x10 <sup>-5</sup>                  |
| S02 (HA04)                                                 | 2.0           | Silt                              | 2.8                                | 4.8x10 <sup>-5</sup>                  |
| S03 (HA09)                                                 | 2.5           | Sand                              | 1.5                                | 2.6x10 <sup>-5</sup>                  |
| S04 (HA08)                                                 | 2.0           | Silt                              | 3.0                                | 4.9x10 <sup>-5</sup>                  |
| S05 (HA06)                                                 | 2.5           | Sand                              | 0.9                                | 1.6x10 <sup>-5</sup>                  |
| S06 (HA07)                                                 | 2.0           | Silt                              | 6.1                                | 1.0x10 <sup>-4</sup>                  |
| S07 (HA13)                                                 | 4.0           | Sand                              | 4.3                                | 7.2x10 <sup>-5</sup>                  |
| S08 (HA19)                                                 | 2.5           | Sand                              | 4.9                                | 8.1x10 <sup>-5</sup>                  |
| S09 (HA18)                                                 | 2.0           | Silt                              | 3.0                                | 5.1x10 <sup>-5</sup>                  |
| S10 (HA16)                                                 | 2.0           | Silt                              | 2.0                                | 3.4x10 <sup>-5</sup>                  |
| S11 (HA22)                                                 | 4.0           | Sand                              | 4.3                                | 7.2x10 <sup>-5</sup>                  |
| S12 (HA23)                                                 | 2.0           | Silt                              | 3.3                                | 5.6x10 <sup>-5</sup>                  |

As shown in Table 1, the average soakage rates range from 0.9 to 6.1 L/min/m<sup>2</sup>, with an average of 3.2 L/min/m<sup>2</sup>.

| Table 2: Summary of Constant Head Permeability Test Results |               |                                   |                                    |                                       |
|-------------------------------------------------------------|---------------|-----------------------------------|------------------------------------|---------------------------------------|
| Test Location                                               | Depth of hole | Test targeting silt or sand layer | Average soakage<br>rate (L/min/m²) | Hydraulic Conductivity<br>(k) (m/sec) |
| S01(HA02)                                                   | 4.0           | Sand                              | -                                  | 4.4x10 <sup>-5</sup>                  |
| S03 (HA09)                                                  | 2.5           | Sand                              | -                                  | 1.1x10 <sup>-5</sup>                  |
| S07 (HA13)                                                  | 4.0           | Sand                              | -                                  | 4.1x10 <sup>-5</sup>                  |
| S08 (HA19)                                                  | 2.5           | Sand                              | -                                  | 7.0x10 <sup>-5</sup>                  |
| S11 (HA22)                                                  | 4.0           | Sand                              | -                                  | 3.7x10 <sup>-5</sup>                  |

As required by the MPDC guidelines, a reduction factor of 0.5 must be applied to the soakage rates in Table 1 and Table 2 to provide design soakage rates.

# 5 GROUNDWATER

Based on the results of the CMW Geotechnical Investigation<sup>3</sup> carried out in mid 2021 to support a resource consent application for the subdivision, the standing groundwater table is approximately 12m to 15m below the existing ground surface (RL45 to 48m relative to Moturiki Datum). However it should be noted that a shallower (ie. perched) groundwater table was also observed between 2.7m and 4.8m below existing ground levels. A summary of these findings is provided in Table 3 below:

| Table 2: Groundwater Data |                             |                     |                      |
|---------------------------|-----------------------------|---------------------|----------------------|
| Test Location             | Groundwater Depth<br>(mbgl) | Elevation<br>(m RL) | Measured or inferred |
| CPT01                     | 14.8                        | 46.2                | Inferred             |
| CPT02                     | 12.2                        | 47.8                | Measured             |
| CPT03                     | 14.8                        | 47.2                | Inferred             |
| CPT04                     | 13.5                        | 46.5                | Measured             |
| CPT05                     | 13.2                        | 46.8                | Measured             |
| CPT06                     | 14.9                        | 45.1                | Measured             |
| CPT07                     | 2.9                         | 57.1                | Measured             |
| CPT08                     | 3.7                         | 55.3                | Measured             |
| CPT09                     | 4.2                         | 55.8                | Measured             |
| CPT10                     | 4.8                         | 56.2                | Measured             |
| HA12                      | 2.7                         | 57.3                | Measured             |
| HA14                      | 3.6                         | 57.4                | Measured             |
| HA16                      | 4.0                         | 56.0                | Measured             |
| HA17                      | 3.0                         | 58.0                | Measured             |
| HA18                      | 2.9                         | 57.1                | Measured             |
| HA19                      | 3.4                         | 56.6                | Measured             |
| HA20                      | 3.0                         | 56.0                | Measured             |
| HA21                      | 3.6                         | 56.4                | Measured             |
| HA23                      | 3.8                         | 56.2                | Measured             |
| HA24                      | 3.8                         | 55.2                | Measured             |

The near surface groundwater levels encountered at CPT07 to CPT10 and hand auger boreholes HA12, HA14, HA16, HA17, HA18, HA19, HA20, HA21, HA23 and HA24 are interpreted to represent a perched groundwater within the variable and layered near surface deposits.

<sup>&</sup>lt;sup>3</sup> CMW Geotechnical Investigation Report for the Tauranga Road Industrial Subdivision, Ref. TGA2020-0304AC Rev 0, dated 30 August 2021

## 6 DISCUSSION OF RESULTS

Based on the above permeability test results, soakage to ground is permitted as calculated rates exceed the minimum design soakage rate of 0.5L/min/m<sup>2</sup> outlined by the MPDC Guidelines.

The range of calculated soakage rates from across the site are typical of this type of testing and the soil types and are therefore not considered highly variable.

Given the results obtained and the number of tests undertaken we consider the testing adequate to provide representative rates for soakage design.

Soakage design must be undertaken by a Chartered Professional Engineer as part of a building consent application, with reference to the conclusions and recommendations of this report, the MPDC Soakage Design Procedures and Guidelines documentation, when roof and hardstand areas are known.

#### For and on behalf of CMW Geosciences

Prepared by:

Reviewed by:

Matt Packard

Principal Geotechnical Engineer CMEngNZ, CPEng (Geotechnical)

Luke McCann Engineering Geologist

Authorised by:

Ken Read Principal Geotechnical Engineer CMEngNZ, CPEng

- Distribution: 1 electronic copy to Calcutta Farms Limited via email 1 electronic copy to Veros Property Group Limited via email 1 electronic copy to Bloxam, Burnett and Olliver Limited via email Original held at CMW Geosciences
- Attachments: Use of this Report Geotechnical Investigation Plan Borehole logs Permeability Calculations



### **USE OF THIS REPORT**

Site subsurface conditions cause more construction problems than any other factor and therefore are generally the largest technical risk to a project. These notes have been prepared to help you understand the limitations of your geotechnical report.

#### Your geotechnical report is based on project specific criteria

Your geotechnical report has been developed on the basis of our understanding of your project specific requirements and applies only to the site area investigated. Project requirements could include the general nature of the project; its size and configuration; the location of any structures on or around the site; and the presence of underground utilities. If there are any subsequent changes to your project you should seek geotechnical advice as to how such changes affect your report's recommendations. Your geotechnical report should not be applied to a different project given the inherent differences between projects and sites.

#### Subsurface conditions can change

Subsurface conditions are created by natural processes and the activity of man. For example, water levels can vary with time, fill may be placed on a site and pollutants may migrate with time. Because a report is based on conditions which existed at the time of subsurface investigation, the conditions may have changed, particularly when large periods of time have elapsed since the investigations were performed.

#### Interpretation of factual data

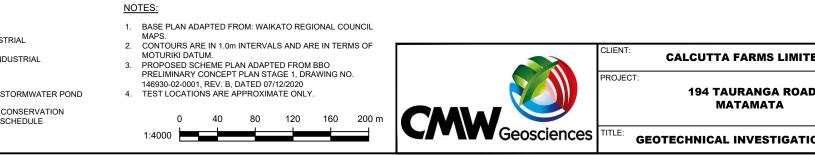
Site investigations identify actual subsurface conditions at points where samples are taken. Additional geotechnical information (e.g., literature and external data source review, laboratory testing on samples, etc) are interpreted by geologists, engineers or scientists to provide an opinion about overall site conditions, their likely impact on the proposed development and recommended actions. Actual conditions may differ from those inferred to exist, because no professional, no matter how qualified, can exactly predict what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions.

#### Your report's recommendations require confirmation during construction

Your report is based on the assumption that the site conditions as revealed through selective point sampling are indicative of actual conditions throughout an area. This assumption cannot be substantiated until project implementation has commenced. For this reason, you should retain geotechnical services throughout the construction stage, to identify variances, conduct additional tests if required, and recommend solutions to problems encountered on site. A geotechnical designer, who is fully familiar with the background information, is able to assess whether the report's recommendations are valid and whether changes should be considered as the project develops. An unfamiliar party using this report increases the risk that the report will be misinterpreted.

#### Interpretation by other design professionals

Costly problems can occur when other design professionals develop their plans based on misinterpretations of a geotechnical report. Read all geotechnical documents closely and do not hesitate to ask any questions you may have. To help avoid misinterpretations, retain the assistance of geotechnical professionals familiar with the contents of the geotechnical report to work with other project design professionals who need to take account of the contents of the report. Have the report implications explained to design professionals who need to take account of them, and then have the design plans and specifications produced reviewed by a competent Geotechnical Engineer.




#### LEGEND:

| 🕂 НА01      | HAND AUGER (HA) LOCATION              |
|-------------|---------------------------------------|
| О СРТ01     | CONE PENETROMETER TEST (CPT) LOCATION |
| <b>S</b> 01 | SOAKAGE TEST LOCATION                 |
|             | SITE BOUNDARY                         |
| ••••••      | APPROXIMATE AREA OF POTENTIAL         |

| APPROXIMATE AREA OF POTENTIAL |
|-------------------------------|
| LIQUEFACTION SETTLEMENT RISK  |
|                               |

| LIGHT INDUSTRIAL    |
|---------------------|
| GENERAL INDUSTRIAL  |
| STAGE ONE           |
| INDICATIVE STORMWAT |
| PROPOSED CONSERVAT  |
|                     |



C:\USERS\LUKEM\CMW GEDSCIENCES PTY LTD\CMW CDNNECT - TGA2020-0304 TAURANGA RDAD INDUSTRIAL SUBDIVISION, MATAMATA\DRAWINGS\TGA2020-0304 REV.0.DWG

| S LIMITED.     | DRAWN:<br>PB        | PROJECT No:<br>TGA2020-0304 |
|----------------|---------------------|-----------------------------|
| GA ROAD        | CHECKED:<br>LPM     | DRAWING:<br>01              |
| TA             | REVISION:<br>0      | SCALE:<br>1:4000            |
| STIGATION PLAN | DATE:<br>24/06/2021 | SHEET:<br>A3                |

# CMW Geosciences – SOIL (Field Logging Guide)

#### SEQUENCE OF TERMS:

Polished

Blocky

Lensoidal

Slickensided

Fracture planes are polished or glossy

Discontinuous pockets of a soil within a different soil mass

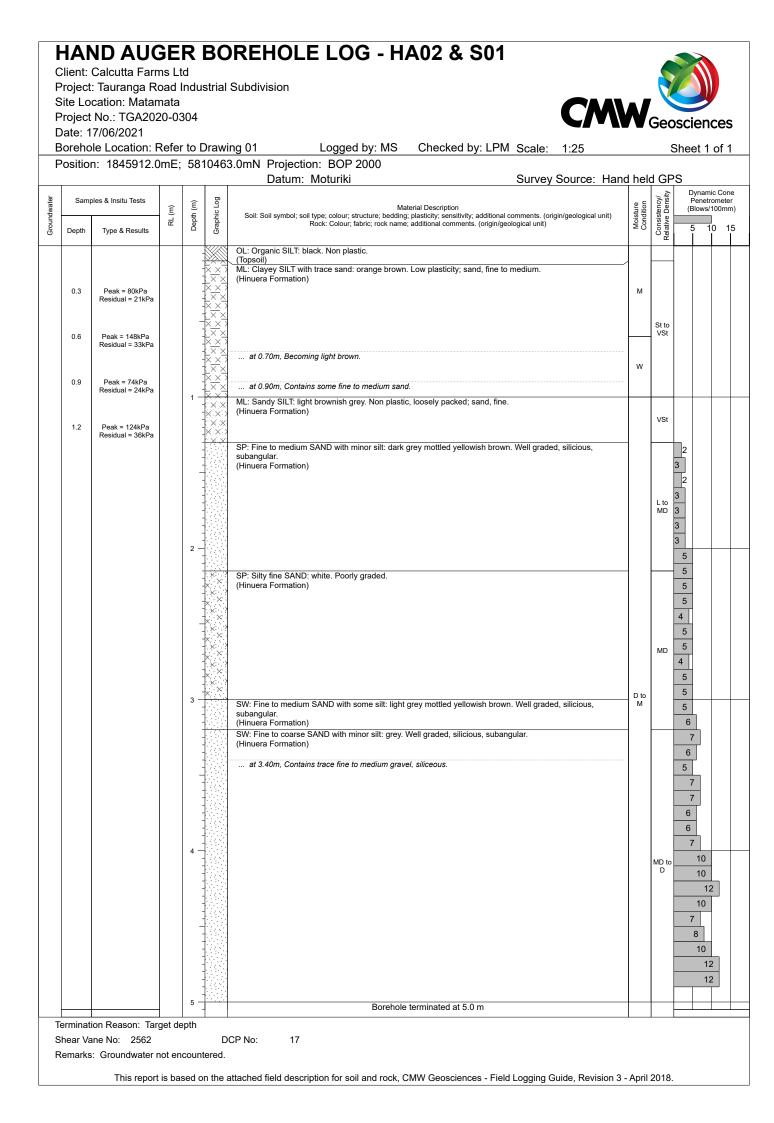
Cohesive soil that can be broken down into small angular lumps which resist further

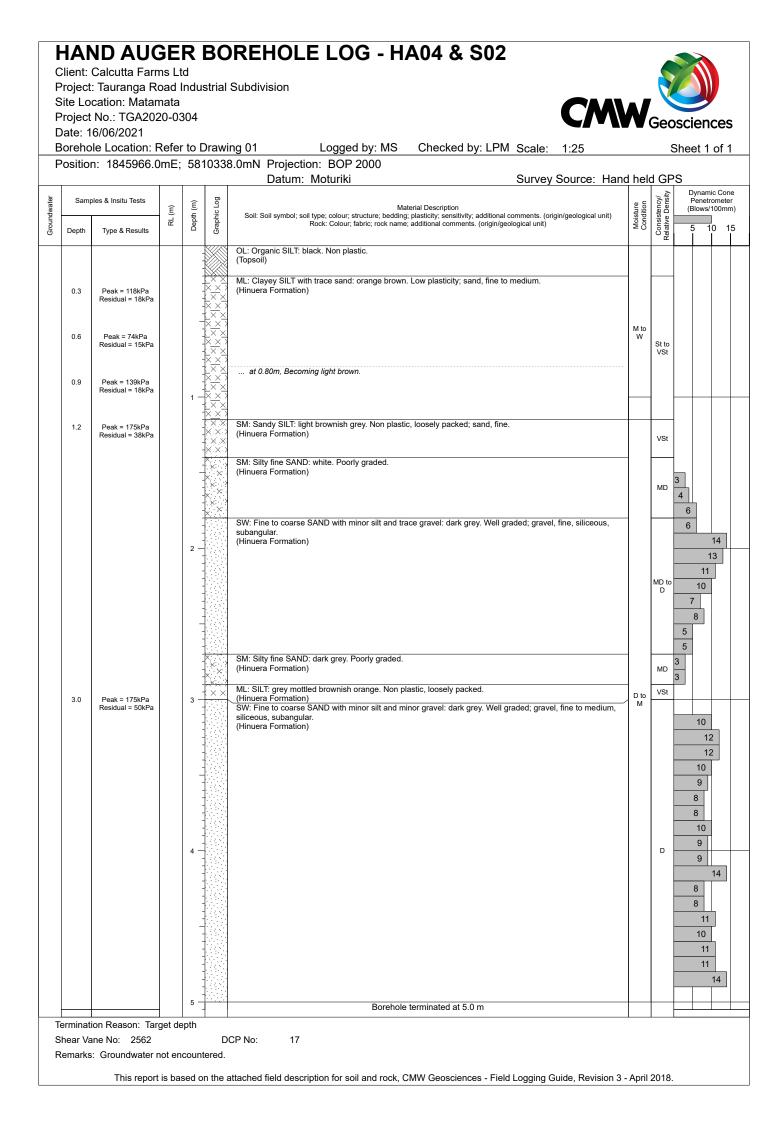
Fracture planes are striated

breakdown

Fine: Soil Symbol – Soil Type – Colour – Structure – (Consistency) – (Moisture) – Bedding – Plasticity – Sensitivity – Additional Comments – Origin/Geological Unit Coarse: Soil Symbol – Soil Type – Colour – Structure – Grading – Particle shape – (Relative Density) – (Moisture) – Bedding – Additional Comments – Origin/Geological Unit

| BEHAVIOURAL                           | SOIL CLAS            | SIFICATION S                        | YSTEM          |                                             |                       |            | PRC                          | OPORTIO    | ONAL TE      | RMS DEFINIT            | ION                  |               |                 |                          |                 |
|---------------------------------------|----------------------|-------------------------------------|----------------|---------------------------------------------|-----------------------|------------|------------------------------|------------|--------------|------------------------|----------------------|---------------|-----------------|--------------------------|-----------------|
| Major Divisions                       | (behaviour l         | based logging)                      | Soil<br>Symbol | ,                                           | Soil Nan              | ne         | Frac                         | ction      |              | Term                   | % of Soil            | Mass          |                 | Example                  | 9               |
|                                       |                      | Clean<br>gravel                     | GW             |                                             | graded<br>el, fine te | 0          | Majo                         | or         | () [L        | JPPER CASE             | ] ≥50 [m<br>constitu |               |                 | GRAVE                    | L               |
|                                       | Gravel               | <5%                                 |                | coars                                       | se grave              | el         | Sub                          | ordinate   | ()           | [lower case]           | 20 -                 |               |                 | Sandy                    |                 |
|                                       | >50% of<br>coarse    | smaller<br>0.075mm                  | GP             | Poorly graded<br>gravel                     |                       | a          |                              |            | wi           | /ith some 12 –         |                      | 0 with some   |                 | with some s              | sand            |
|                                       | fraction<br>>2mm     | Gravel<br>with                      | GM             | Silty                                       | gravel                |            | Mino                         | Minor      |              | th minor               | 5 – 1                | 2             | with minor sand |                          |                 |
| Coarse<br>grained soils               | 2                    | >12%<br>fines                       | GC             | Clay                                        | ey grave              | əl         |                              |            |              | trace of (or slightly) | < 5                  |               | wit             | h trace of san<br>sandy) |                 |
| more than<br>65%>0.06mm               |                      | Clean                               | SW             | Well-graded sand,<br>fine to coarse<br>sand |                       |            | VISUAL PROPORTION PERCENTAGE |            |              |                        |                      |               |                 |                          | 1               |
| ≥50% of<br>coarse<br>fraction<br><2mm |                      | SP                                  | Poorly graded  |                                             |                       | 1          | -:,                          | 1          | 1 : :        | 16.                    | 4.                   | .)            | ( + ?           | >                        |                 |
|                                       | Sand                 |                                     |                |                                             | sand<br>Silty sand    |            |                              | - )        | 1            | ····)(.                | ٠ ۲                  | * .)          | (- ` `          | - ,                      |                 |
|                                       | <2mm                 | with<br>>12%                        | SC             | Clayey sand                                 |                       |            | 1.                           | ×.         | )            | 1.                     | ./ \                 | · .'          | 1)              | 1                        | 4 -             |
|                                       |                      | fines                               |                | -                                           | ey sanu               |            |                              | :.<br>     |              | 1                      |                      | ÷             | /               |                          | /               |
|                                       | Exhibits             | inorganic                           | ML             | Silt<br>Silt o                              | of high               |            |                              | 1%         |              | 3%                     | 0                    | 5%            |                 | 109                      | %               |
| Fine grained                          | dilatant<br>behaviou | r                                   | MH<br>OL       | plast                                       |                       |            | 6                            | 24         | -            | (                      |                      | - 35          | 2               | 455                      |                 |
| soils 35% or<br>more                  |                      | organic                             | CL             |                                             | of low                |            | 1.                           | 1          | 1.4          | ( 1183                 |                      | 5.10          |                 | 11-12                    | t, T,           |
| <0.06mm                               | No dilatar           |                                     |                | plast<br>Clav                               | icity<br>of high      |            | 1                            |            | )            | 1.11                   |                      | 1             |                 | The E-                   | 215             |
|                                       | behaviou             |                                     | СН             | plast                                       | icity                 |            | 1                            |            |              | A                      | Y V                  |               | 1               | 1000                     | 95/             |
| Highl                                 | y Organic S          | organic<br>oils                     | OH<br>Pt       | Peat                                        | nic clay              |            |                              | 20%        | 6            | 309                    | %                    | 40%           |                 | 50                       | 1%              |
| GRAIN SIZE CF                         |                      |                                     |                |                                             |                       |            |                              |            |              |                        |                      |               |                 | L GRAPHIC                | LOG             |
|                                       |                      |                                     | 0.0            | ARSE                                        |                       |            |                              |            | I            | FINE                   | ORGANIC              | SYME          | BOLS            |                          |                 |
|                                       |                      |                                     | 1              | ravel                                       |                       |            | Sand                         |            |              |                        |                      | Term          |                 | Symbol                   |                 |
| TYPE                                  |                      |                                     | 0              | ۶                                           |                       | ¢,         | ۶                            |            |              |                        |                      |               | - 11            |                          | XX              |
|                                       | Boulders             | Cobbles                             | coarse         | ediu                                        | fine                  | coarse     | medium                       | fine       | Silt         | Clay                   | Organic<br>Soil      | Topso         |                 |                          | XXX.            |
|                                       |                      |                                     | ö              | Ĕ                                           |                       | 8          | Ĕ                            |            |              |                        |                      | Fill          |                 | >>>                      | ×× .            |
| Size Range<br>(mm)                    | 200                  | 60                                  | 20             | 6                                           | 2                     | 0.6        | 0.2                          | 0.06       | 0.002        |                        |                      | Diture        |                 |                          |                 |
| . ,                                   |                      |                                     | NO             | 2X                                          | 00                    | ••••       |                              | ••••       | × × ×        |                        | 14 14 14 14          | Bitum         | ien             |                          |                 |
| Graphic<br>Symbol                     |                      |                                     | 308            | 360                                         | Sõ                    |            | ••••                         | ••••       | xxx<br>x x x |                        | 乔乔乔?                 | Conci         | rete            |                          |                 |
| ORGANIC SOIL                          | S / DESCR            | IPTORS                              |                |                                             |                       |            |                              |            |              | •                      |                      | SHAD          | DE AN           | D COLOUR                 |                 |
| Term                                  |                      | Description                         |                |                                             |                       |            |                              |            |              |                        |                      | 1             |                 | 2                        | 3               |
| Topsoil                               |                      | Surficial organic<br>having been bu |                |                                             |                       |            |                              |            |              |                        |                      | ligl          | ht              | pinkish                  | pink            |
| Organic clay, sil                     | t or sand            | Contains finely                     | divided or     | ganic r                                     |                       |            |                              |            |              |                        |                      | da            | rk              | reddish                  | red             |
| _ <u></u>                             |                      | Describe as for<br>Consists predor  | minantly of    | plant re                                    |                       |            |                              |            |              |                        |                      | mott<br>strea |                 | yellowish<br>brownish    | orang<br>yellov |
| _                                     |                      | Firm: Fibres all<br>Spongy: Very    | eady comp      | ressed                                      | togethe               |            |                              |            |              |                        |                      |               |                 | greenish<br>bluish       | brow<br>greei   |
| Peat                                  |                      | Plastic: Can be                     | e moulded i    | n hand                                      | and sm                | ears in fi | ingers                       | 41-        |              |                        |                      |               |                 | greyish                  | blue            |
|                                       |                      | Fibrous: Plant<br>Amorphous: N      | lo recognisa   | able pla                                    | ant rema              | ains       |                              |            |              |                        |                      |               |                 |                          | white<br>grey   |
| Rootlets                              |                      | Fine, partly dec<br>(e.g. colluvium | omposed r      |                                             |                       |            | the uppe                     | er part of | a soil pro   | ofile or in a re       | deposited soil       |               |                 |                          | black           |
| Carbonaceous                          |                      | Discrete particle                   |                | ned (ca                                     | arbonise              | d) plant i | material.                    |            |              |                        |                      |               |                 |                          |                 |
| SOIL STRUCTU                          | IRE                  |                                     |                |                                             |                       |            |                              |            |              | GRADING                | (GRAVELS & S/        | ANDS)         |                 |                          |                 |
| Term                                  | Descriptio           | n                                   |                |                                             |                       |            |                              |            |              | Term                   | Description          |               |                 |                          |                 |
| Homogeneous                           | The total I          | ack of visible be                   | dding and t    | the sam                                     | ne colou              | ir and ap  | pearance                     | e throug   | nout         | Well                   | Good represe         | entation of   | all na          | rticle size ran          | des from        |
| Bedded                                | The prese            | ence of layers                      |                |                                             |                       |            |                              |            |              | Graded                 | largest to sm        |               | pu              |                          | 500 11011       |
| Fissured                              | Breaks ale           | ong definite plan                   | es of fractu   | re with                                     | little res            | sistance   | to fractur                   | ring       |              |                        |                      | sentation     | of grai         | n sizes – furth          | ner             |
| <u> </u>                              |                      |                                     |                |                                             |                       |            |                              |            |              | 1                      | divided into:        |               | -               |                          |                 |


Poorly

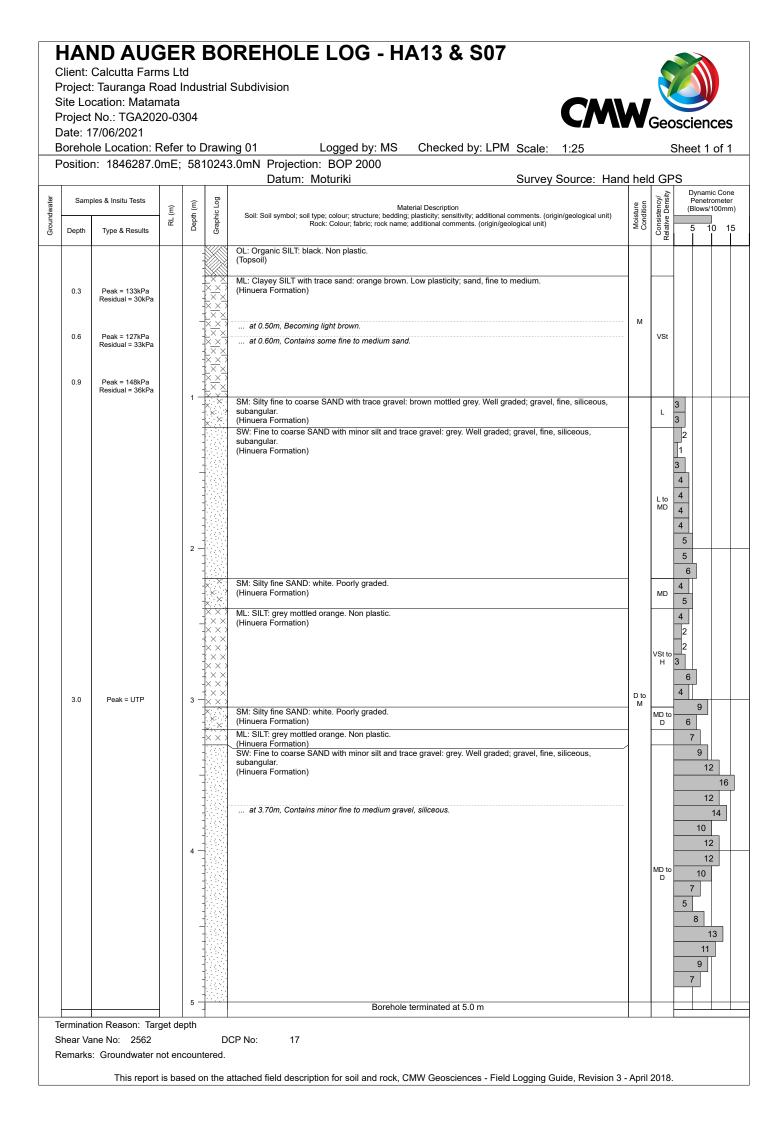

Graded

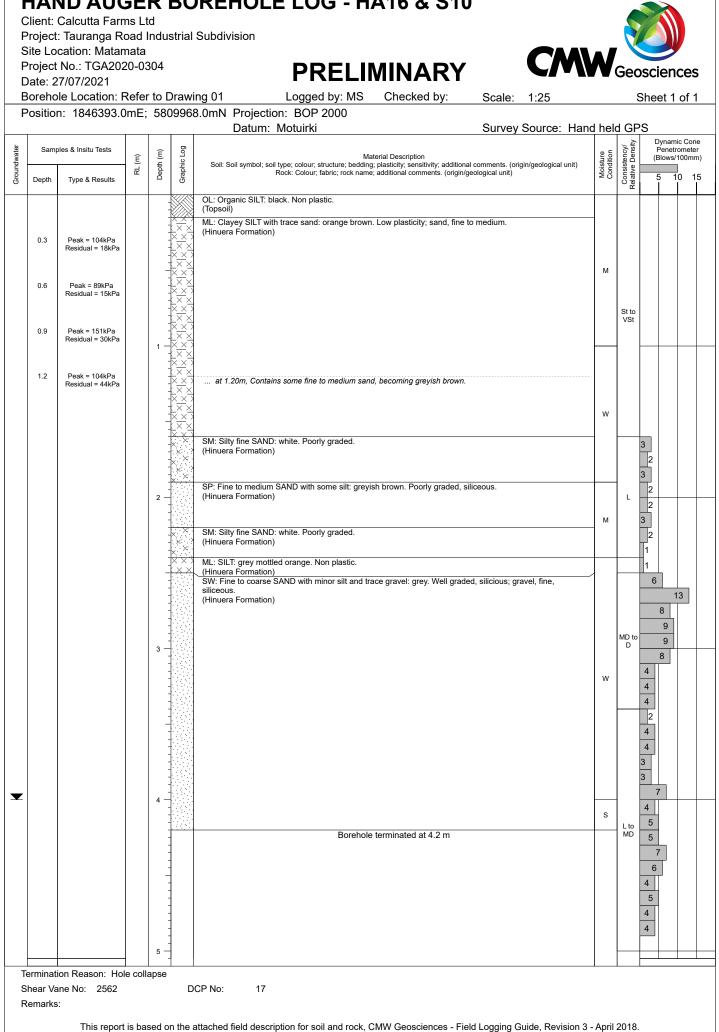
| ORGANIC                                           | Term                                                         | Symbol                                                                   |                                                           | Medium de   | ense                  | 35 - 65        | 5                                                                                     | 10         |
|---------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------|-------------|-----------------------|----------------|---------------------------------------------------------------------------------------|------------|
|                                                   | Tenn                                                         | Symbol                                                                   |                                                           | Loose       |                       | 15 - 35        | 5                                                                                     | 4 -        |
| Organic                                           | Topsoil                                                      |                                                                          |                                                           | Very loose  |                       | < 15           | <                                                                                     |            |
| Soil                                              | Fill                                                         |                                                                          |                                                           | Note:       |                       |                | cannot be con<br>ied between S                                                        |            |
|                                                   | Bitumen                                                      |                                                                          |                                                           | •           |                       | " values are u | ncorrected.                                                                           |            |
| N. N. N. N. N.                                    | Concrete                                                     | ******                                                                   | *****                                                     | MOISTUR     |                       | N<br>Coarse    |                                                                                       |            |
| ~~~~                                              |                                                              |                                                                          |                                                           | Condition   | Descriptio            | n Soils        | Fine Soils                                                                            | Abbreviati |
|                                                   | SHADE A                                                      | ND COLOUR                                                                | 3                                                         | Dry         | Looks and feels dry   |                | Hard,<br>powdery or<br>friable                                                        | D          |
| greater depth,<br>ied topsoil.<br>kidize rapidly. | mottled yellowish<br>streaked brownish<br>greenish<br>bluish | reddish<br>yellowish<br>brownish<br>greenish                             | sh red<br>ish orange<br>ish yellow<br>sh brown<br>h green | Moist       | Feels coo<br>darkened | i lends        | Weakened<br>by<br>moisture,<br>but no free<br>water on<br>hands<br>when<br>remoulding | м          |
| deposited soil                                    | NDS)                                                         |                                                                          | white<br>grey<br>black                                    | Wet         | in colour             | to<br>cohere   | Weakened<br>by<br>moisture,<br>free water<br>forms on<br>hands<br>when<br>handling    | w          |
| Description                                       | Saturated                                                    |                                                                          | ol, darkened i<br>er is present o                         | S           |                       |                |                                                                                       |            |
| Good represent                                    | tation of all r                                              | particle size ran                                                        | ges from                                                  | PLASTICIT   | Y (CLAYS 8            |                |                                                                                       |            |
| largest to small                                  | Term                                                         |                                                                          | Descriptio                                                | Description |                       |                |                                                                                       |            |
| Limited represe<br>divided into:                  | High plastic                                                 | High plasticity Can be moulded or deforme<br>cracking or showing any ten |                                                           |             |                       |                |                                                                                       |            |
| Gap grade                                         | Low plastic                                                  | ity                                                                      | When moulded can be crumb<br>behaviour                    |             |                       |                |                                                                                       |            |

|                                                                                                       | Round                                                                                                               | ed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                           | Subrou                                                                                   | nded                                                                                                                                                                |                                                                                      | Suban                                                                                                                                                                                             | gular                                                                                                                                                                                                                                 | A                                                                                                                              | ngular                                                                       |  |  |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--|--|
|                                                                                                       |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                           |                                                                                          |                                                                                                                                                                     |                                                                                      |                                                                                                                                                                                                   |                                                                                                                                                                                                                                       |                                                                                                                                |                                                                              |  |  |
| CONSISTE                                                                                              | ENCY TERMS                                                                                                          | FOR FINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SOILS                                                                                                                                                                                                                                                                                                     |                                                                                          |                                                                                                                                                                     |                                                                                      |                                                                                                                                                                                                   |                                                                                                                                                                                                                                       |                                                                                                                                |                                                                              |  |  |
| Descriptive                                                                                           | e term                                                                                                              | Undrained S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | hear Strength                                                                                                                                                                                                                                                                                             | n (kPa)                                                                                  |                                                                                                                                                                     |                                                                                      | Diagnostic Feature                                                                                                                                                                                | es                                                                                                                                                                                                                                    |                                                                                                                                | Abbreviatio                                                                  |  |  |
| Very Soft                                                                                             |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <12                                                                                                                                                                                                                                                                                                       | Easi                                                                                     | y exudes bet                                                                                                                                                        | tween fing                                                                           | ers when squeezed                                                                                                                                                                                 |                                                                                                                                                                                                                                       |                                                                                                                                | VS                                                                           |  |  |
| Soft                                                                                                  |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12-25                                                                                                                                                                                                                                                                                                     | Easi                                                                                     | ly indented by                                                                                                                                                      | y fingers                                                                            |                                                                                                                                                                                                   |                                                                                                                                                                                                                                       |                                                                                                                                | S                                                                            |  |  |
| Firm                                                                                                  |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25-50                                                                                                                                                                                                                                                                                                     | Inde                                                                                     | nted by strong                                                                                                                                                      | g finger pr                                                                          | ressure and can be in                                                                                                                                                                             | dented by thumb pre                                                                                                                                                                                                                   | ssure                                                                                                                          | F                                                                            |  |  |
| Stiff                                                                                                 |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50-100                                                                                                                                                                                                                                                                                                    | Can                                                                                      | not be indente                                                                                                                                                      | ed by thun                                                                           | nb pressure                                                                                                                                                                                       |                                                                                                                                                                                                                                       |                                                                                                                                | St                                                                           |  |  |
| Very Stiff                                                                                            |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100-200                                                                                                                                                                                                                                                                                                   | Can                                                                                      | be indented b                                                                                                                                                       | by thumb r                                                                           | nail                                                                                                                                                                                              |                                                                                                                                                                                                                                       |                                                                                                                                | VSt                                                                          |  |  |
| Hard                                                                                                  |                                                                                                                     | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200-500                                                                                                                                                                                                                                                                                                   | Diffic                                                                                   | ult to indent l                                                                                                                                                     | by thumb ı                                                                           | nail                                                                                                                                                                                              |                                                                                                                                                                                                                                       |                                                                                                                                | н                                                                            |  |  |
| DENSITY I                                                                                             | INDEX (RELA                                                                                                         | TIVE DENSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TY) TERMS F                                                                                                                                                                                                                                                                                               | OR COARSE S                                                                              | OILS                                                                                                                                                                |                                                                                      |                                                                                                                                                                                                   |                                                                                                                                                                                                                                       |                                                                                                                                |                                                                              |  |  |
| Descriptive                                                                                           | e term                                                                                                              | Density Inde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | x (RD)                                                                                                                                                                                                                                                                                                    | SPT "N" v<br>(blows/30                                                                   | 「"N" value Dyna                                                                                                                                                     |                                                                                      | amic Cone (blows/10                                                                                                                                                                               | 0mm)                                                                                                                                                                                                                                  | Abbreviation                                                                                                                   |                                                                              |  |  |
| Very Dens                                                                                             | e                                                                                                                   | > 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           | > 50                                                                                     |                                                                                                                                                                     |                                                                                      | > 17                                                                                                                                                                                              | VD                                                                                                                                                                                                                                    |                                                                                                                                | 1                                                                            |  |  |
| Dense                                                                                                 |                                                                                                                     | 65 - 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ;                                                                                                                                                                                                                                                                                                         | 30 - 5                                                                                   | 0                                                                                                                                                                   |                                                                                      | 7 - 17                                                                                                                                                                                            | D                                                                                                                                                                                                                                     |                                                                                                                                |                                                                              |  |  |
| Medium de                                                                                             | ense                                                                                                                | 35 - 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ;                                                                                                                                                                                                                                                                                                         | 10 - 30                                                                                  |                                                                                                                                                                     |                                                                                      | 3 - 7                                                                                                                                                                                             |                                                                                                                                                                                                                                       |                                                                                                                                | MD                                                                           |  |  |
| Loose                                                                                                 |                                                                                                                     | 45 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15 - 35                                                                                                                                                                                                                                                                                                   |                                                                                          | 4 - 10                                                                                                                                                              |                                                                                      | 1 - 3                                                                                                                                                                                             |                                                                                                                                                                                                                                       | L                                                                                                                              |                                                                              |  |  |
| Loose                                                                                                 |                                                                                                                     | 15 - 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,                                                                                                                                                                                                                                                                                                         |                                                                                          | 5                                                                                                                                                                   |                                                                                      | 1-3                                                                                                                                                                                               |                                                                                                                                                                                                                                       |                                                                                                                                |                                                                              |  |  |
| Loose<br>Very loose<br>Note:                                                                          | Where st<br>No corre                                                                                                | < 15<br>rength data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cannot be con<br>ed between S                                                                                                                                                                                                                                                                             | < 4<br>firmed Loosely F                                                                  | Packed (LP) a                                                                                                                                                       |                                                                                      | 0 - 2<br>y Packed (TP) may b<br>ynamic Cone Penetro                                                                                                                                               |                                                                                                                                                                                                                                       | VL<br>alues.                                                                                                                   |                                                                              |  |  |
| Very loose<br>Note:<br>MOISTURI                                                                       | Where st<br>No corre                                                                                                | < 15<br>rength data o<br>ation is impli<br>values are un                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cannot be con<br>ed between S                                                                                                                                                                                                                                                                             | < 4<br>firmed Loosely F                                                                  | Packed (LP) a<br>tition Test (SP                                                                                                                                    | PT) and Dy                                                                           | 0 - 2<br>y Packed (TP) may b                                                                                                                                                                      |                                                                                                                                                                                                                                       | alues.<br>IATION                                                                                                               |                                                                              |  |  |
| Very loose<br>Note:<br>MOISTURI                                                                       | Where st<br>No correl<br>SPT "N"                                                                                    | < 15<br>rength data o<br>ation is impli<br>values are un<br>Coarse<br>Soils<br>Runs<br>freely<br>through                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cannot be con<br>ed between S<br>ncorrected.                                                                                                                                                                                                                                                              | < 4<br>firmed Loosely R<br>tandard Penetra<br>Abbreviation                               | Packed (LP) a<br>tion Test (SP<br>BEDDING                                                                                                                           | PT) and Dy                                                                           | 0 - 2<br>y Packed (TP) may b<br>ynamic Cone Penetro<br>IESS (Sedimentary)                                                                                                                         | BEDDING INCLIN                                                                                                                                                                                                                        | alues.<br>IATION                                                                                                               |                                                                              |  |  |
| Very loose<br>Note:<br>MOISTURI                                                                       | Where st<br>No correl<br>SPT "N"<br>E CONDITION<br>Description<br>Looks and                                         | < 15<br>rength data o<br>ation is impli<br>values are un<br>Coarse<br>Soils<br>Runs<br>freely                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cannot be con<br>ed between S<br>ncorrected.<br>Fine Soils<br>Hard,<br>powdery or<br>friable<br>Weakened                                                                                                                                                                                                  | < 4<br>firmed Loosely R<br>tandard Penetra<br>Abbreviation                               | Packed (LP) a<br>tition Test (SP<br>BEDDING<br>Term                                                                                                                 | PT) and Dy<br>G THICKN<br>minated                                                    | 0 - 2<br>y Packed (TP) may b<br>ynamic Cone Penetro<br>IESS (Sedimentary)<br>Bed Thickness                                                                                                        | BEDDING INCLIN                                                                                                                                                                                                                        | alues.<br>JATION                                                                                                               |                                                                              |  |  |
| Very loose<br>Note:<br>MOISTURI<br>Condition<br>Dry                                                   | Where st<br>No correl<br>SPT "N"<br>E CONDITION<br>Description<br>Looks and                                         | < 15<br>rength data o<br>ation is impli<br>values are un<br>Coarse<br>Soils<br>Runs<br>freely<br>through                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cannot be con<br>ed between S<br>hcorrected.<br>Fine Soils<br>Hard,<br>powdery or<br>friable<br>Weakened<br>by<br>moisture,<br>but no free                                                                                                                                                                | < 4<br>firmed Loosely R<br>tandard Penetra<br>Abbreviation                               | Packed (LP) a<br>titon Test (SP<br>BEDDING<br>Term<br>Thinly lan                                                                                                    | PT) and Dy<br>G THICKN<br>minated                                                    | 0 - 2<br>y Packed (TP) may b<br>ynamic Cone Penetro<br>IESS (Sedimentary)<br>Bed Thickness<br>< 2mm                                                                                               | BEDDING INCLIN<br>Term<br>Sub-horizontal                                                                                                                                                                                              | alues.<br>IATION<br>Inclinatio<br>0º - 5º                                                                                      | n (from horizonta                                                            |  |  |
| Very loose<br>Note:<br>MOISTURI<br>Condition<br>Dry                                                   | Where st<br>No correl<br>SPT "N"<br>E CONDITION<br>Description<br>Looks and<br>feels dry<br>Feels cool,             | < 15<br>rength data o<br>ation is impli<br>values are un<br>Coarse<br>Soils<br>Runs<br>freely<br>through                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cannot be con<br>ed between S<br>ncorrected.<br>Fine Soils<br>Hard,<br>powdery or<br>friable<br>Weakened<br>by<br>moisture,<br>but no free<br>water on<br>hands<br>when                                                                                                                                   | < 4<br>firmed Loosely R<br>tandard Penetra<br>Abbreviation<br>D                          | Packed (LP) a<br>tion Test (SP<br>BEDDING<br>Term<br>Thinly lan<br>Laminate                                                                                         | PT) and Dy<br>G THICKN<br>minated                                                    | 0 - 2<br>y Packed (TP) may b<br>ynamic Cone Penetro<br>IESS (Sedimentary)<br>Bed Thickness<br>< 2mm<br>2mm - 6mm                                                                                  | BEDDING INCLIN<br>Term<br>Sub-horizontal<br>Gently inclined<br>Moderately<br>inclined<br>Steeply inclined<br>Very steeply                                                                                                             | alues.<br>ATION<br>Inclinatio<br>0° - 5°<br>6° - 15°<br>16° - 30°<br>31° - 60°                                                 | n (from horizonta                                                            |  |  |
| Very loose<br>Note:<br>MOISTURI<br>Condition<br>Dry                                                   | E CONDITION<br>Description<br>Looks and<br>feels dry                                                                | < 15<br>rength data a<br>ation is impli<br>values are un<br>Coarse<br>Soils<br>Runs<br>freely<br>through<br>hands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | cannot be con<br>ed between S<br>ncorrected.<br>Fine Soils<br>Hard,<br>powdery or<br>friable<br>Weakened<br>by<br>moisture,<br>but no free<br>water on<br>hands                                                                                                                                           | < 4<br>firmed Loosely R<br>tandard Penetra<br>Abbreviation<br>D                          | Packed (LP) a<br>tition Test (SF<br>BEDDING<br>Term<br>Thinly lan<br>Laminate<br>Very thin                                                                          | PT) and Dy<br>G THICKN<br>minated                                                    | 0 - 2<br>y Packed (TP) may b<br>ynamic Cone Penetro<br>IESS (Sedimentary)<br>Bed Thickness<br>< 2mm<br>2mm - 6mm<br>6mm - 20mm                                                                    | BEDDING INCLIN<br>Term<br>Sub-horizontal<br>Gently inclined<br>Moderately<br>inclined<br>Steeply inclined<br>Very steeply<br>inclined                                                                                                 | alues.<br>ATION<br>Inclinatio<br>0° - 5°<br>6° - 15°<br>16° - 30°<br>31° - 60°<br>61° - 80°                                    | n (from horizonta                                                            |  |  |
| Very loose<br>Note:                                                                                   | Where st<br>No correl<br>SPT "N"<br>E CONDITION<br>Description<br>Looks and<br>feels dry<br>Feels cool,<br>darkened | < 15<br>rength data a<br>ation is impli-<br>values are un<br>Coarse<br>Soils<br>Runs<br>freely<br>through<br>hands<br>Tends<br>to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | cannot be con<br>ed between S<br>ncorrected.<br>Fine Soils<br>Hard,<br>powdery or<br>friable<br>Weakened<br>by<br>moisture,<br>but no free<br>water on<br>hands<br>when<br>remoulding<br>Weakened<br>by<br>moisture,<br>free water                                                                        | < 4<br>firmed Loosely R<br>tandard Penetra<br>Abbreviation<br>D                          | Packed (LP) a<br>titon Test (SP<br>BEDDING<br>Term<br>Thinly lan<br>Laminate<br>Very thin<br>Thin                                                                   | PT) and Dy<br>G THICKN<br>minated<br>ed                                              | 0 - 2<br>y Packed (TP) may b<br>ynamic Cone Penetro<br>IESS (Sedimentary)<br>Bed Thickness<br>< 2mm<br>2mm - 6mm<br>6mm - 20mm<br>20mm - 60mm                                                     | BEDDING INCLIN<br>Term<br>Sub-horizontal<br>Gently inclined<br>Moderately<br>inclined<br>Steeply inclined<br>Very steeply<br>inclined<br>Sub vertical                                                                                 | alues.<br>ATION<br>Inclinatio<br>0° - 5°<br>6° - 15°<br>16° - 30°<br>31° - 60°<br>61° - 80°<br>81° - 90°                       | n (from horizonta                                                            |  |  |
| Very loose<br>Note:<br>MOISTURI<br>Condition<br>Dry<br>Moist                                          | Where st<br>No correl<br>SPT "N"<br>E CONDITION<br>Description<br>Looks and<br>feels dry<br>Feels cool,<br>darkened | < 15<br>rength data a<br>ation is impli-<br>values are un<br>Coarse<br>Soils<br>Runs<br>freely<br>through<br>hands<br>Tends<br>to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | cannot be con<br>ed between S<br>corrected.<br>Fine Soils<br>Hard,<br>powdery or<br>friable<br>Weakened<br>by<br>moisture,<br>but no free<br>water on<br>hands<br>when<br>remoulding<br>Weakened<br>by<br>moisture,                                                                                       | < 4<br>firmed Loosely R<br>tandard Penetra<br>Abbreviation<br>D<br>M                     | Packed (LP) a<br>tition Test (SP<br>BEDDING<br>Term<br>Thinly lan<br>Laminate<br>Very thin<br>Thin<br>Moderate                                                      | PT) and Dy<br>G THICKN<br>minated<br>ed                                              | 0 - 2<br>y Packed (TP) may b<br>ynamic Cone Penetro<br>IESS (Sedimentary)<br>Bed Thickness<br>< 2mm<br>2mm - 6mm<br>6mm - 20mm<br>20mm - 60mm<br>60mm - 200mm                                     | BEDDING INCLIN<br>Term<br>Sub-horizontal<br>Gently inclined<br>Moderately<br>inclined<br>Steeply inclined<br>Very steeply<br>inclined<br>Sub vertical<br>SENSITIVITY OF                                                               | alues.<br>ATION<br>Inclinatio<br>0° - 5°<br>6° - 15°<br>16° - 30°<br>31° - 60°<br>61° - 80°<br>81° - 90°<br>SOIL               | n (from horizonta                                                            |  |  |
| Very loose<br>Note:<br>MOISTURI<br>Condition<br>Dry<br>Moist                                          | Where st<br>No correl<br>SPT "N"<br>E CONDITION<br>Looks and<br>feels dry<br>Feels cool,<br>darkened<br>in colour   | < 15 rength data a ation is implivalues are un Coarse Soils Runs freely through hands Tends to cohere , darkened in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cannot be con<br>ed between S<br>corrected.<br>Fine Soils<br>Hard,<br>powdery or<br>friable<br>Weakened<br>by<br>moisture,<br>but no free<br>water on<br>hands<br>when<br>remoulding<br>Weakened<br>by<br>moisture,<br>free water<br>forms on<br>hands<br>when<br>handling                                | < 4<br>firmed Loosely R<br>tandard Penetra<br>Abbreviation<br>D<br>M                     | Packed (LP) a<br>titon Test (SF<br>BEDDING<br>Term<br>Thinly lan<br>Laminate<br>Very thin<br>Thin<br>Moderate<br>Moderate                                           | PT) and Dy<br>G THICKN<br>minated<br>ed<br>ely thin<br>ely thick                     | 0 - 2<br>y Packed (TP) may b<br>ynamic Cone Penetro<br>IESS (Sedimentary)<br>Bed Thickness<br>< 2mm<br>2mm - 6mm<br>6mm - 20mm<br>20mm - 60mm<br>60mm - 200mm<br>0.2m - 0.6m                      | BEDDING INCLIN<br>Term<br>Sub-horizontal<br>Gently inclined<br>Moderately<br>inclined<br>Steeply inclined<br>Very steeply<br>inclined<br>Sub vertical                                                                                 | alues.<br>ATION<br>Inclinatio<br>0° - 5°<br>6° - 15°<br>16° - 30°<br>31° - 60°<br>61° - 80°<br>81° - 90°<br>SOIL<br>She        | ח (from horizonta                                                            |  |  |
| Very loose<br>Note:<br>MOISTURI<br>Condition<br>Dry<br>Moist<br>Wet<br>Saturated                      | Where st<br>No correl<br>SPT "N"<br>E CONDITION<br>Looks and<br>feels dry<br>Feels cool,<br>darkened<br>in colour   | < 15 rength data of ation is implivalues are un of the solution of the solutio | Cannot be con<br>ed between S<br>incorrected.                                                                                                                                                                                                                                                             | < 4 firmed Loosely R tandard Penetra Abbreviation D M W                                  | Packed (LP) a<br>tion Test (SF<br>BEDDING<br>Term<br>Thinly lan<br>Laminate<br>Very thin<br>Thin<br>Moderate<br>Thick                                               | PT) and Dy<br>G THICKN<br>minated<br>ed<br>ely thin<br>ely thick                     | 0 - 2<br>y Packed (TP) may b<br>ynamic Cone Penetro<br>IESS (Sedimentary)<br>Bed Thickness<br>< 2mm<br>2mm - 6mm<br>6mm - 20mm<br>20mm - 60mm<br>60mm - 200mm<br>0.2m - 0.6m<br>0.6m - 2m         | BEDDING INCLIN<br>Term<br>Sub-horizontal<br>Gently inclined<br>Moderately<br>inclined<br>Steeply inclined<br>Very steeply<br>inclined<br>Sub vertical<br>SENSITIVITY OF                                                               | alues.<br>Inclinatio<br>0° - 5°<br>6° - 15°<br>16° - 30°<br>31° - 60°<br>61° - 80°<br>81° - 90°<br>SOIL<br>She<br>Rat          | on (from horizonta                                                           |  |  |
| Very loose<br>Note:<br>MOISTURI<br>Condition<br>Dry<br>Moist<br>Wet<br>Saturated                      | Feels cool,<br>darkened<br>in colour                                                                                | < 15 rength data of ation is implivalues are un of the solution of the solutio | Cannot be con<br>ed between S<br>incorrected.                                                                                                                                                                                                                                                             | < 4 firmed Loosely R tandard Penetra Abbreviation D M W                                  | Packed (LP) a<br>tion Test (SF<br>BEDDING<br>Term<br>Thinly lan<br>Laminate<br>Very thin<br>Thin<br>Moderate<br>Thick                                               | PT) and Dy<br>G THICKN<br>minated<br>ed<br>ely thin<br>ely thick                     | 0 - 2<br>y Packed (TP) may b<br>ynamic Cone Penetro<br>IESS (Sedimentary)<br>Bed Thickness<br>< 2mm<br>2mm - 6mm<br>6mm - 20mm<br>20mm - 60mm<br>60mm - 200mm<br>0.2m - 0.6m<br>0.6m - 2m         | BEDDING INCLIN<br>Term<br>Sub-horizontal<br>Gently inclined<br>Moderately<br>inclined<br>Steeply inclined<br>Very steeply<br>inclined<br>Sub vertical<br>SENSITIVITY OF<br>Descriptive Term<br>Insensitive, normal                    | alues.<br>ATION<br>Inclinatio<br>0° - 5°<br>6° - 15°<br>16° - 30°<br>31° - 60°<br>61° - 80°<br>81° - 90°<br>SOIL<br>Sha<br>Rat | ear Strength<br>tio = $\frac{undisturbed}{remoulded}$                        |  |  |
| Very loose<br>Note:<br>MOISTURE<br>Condition<br>Dry<br>Moist<br>Wet<br>Saturated<br>PLASTICIT         | Feels cool,<br>darkened<br>in colour                                                                                | < 15 rength data a ation is implivalues are un Coarse Soils Runs freely through hands Tends to cohere , darkened in is present or SILTS) Description Can be mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | cannot be con<br>ed between S<br>neorrected.<br>Fine Soils<br>Hard,<br>powdery or<br>friable<br>Weakened<br>by<br>moisture,<br>but no free<br>water on<br>hands<br>when<br>remoulding<br>Weakened<br>by<br>moisture,<br>free water<br>forms on<br>hands<br>when<br>handling<br>n colour and<br>the sample | < 4 firmed Loosely R tandard Penetra Abbreviation D M W                                  | Packed (LP) a<br>tion Test (SP<br>BEDDING<br>Term<br>Thinly lan<br>Laminate<br>Very thin<br>Thin<br>Moderate<br>Thick<br>Very thick<br>Very thick                   | PT) and Dy<br>G THICKN<br>minated<br>ed<br>ely thin<br>ely thick<br>k<br>oisture col | 0 - 2<br>y Packed (TP) may b<br>ynamic Cone Penetro<br>IESS (Sedimentary)<br>Bed Thickness<br>< 2mm<br>2mm - 6mm<br>6mm - 20mm<br>20mm - 60mm<br>60mm - 200mm<br>0.2m - 0.6m<br>0.6m - 2m<br>> 2m | BEDDING INCLIN<br>Term<br>Sub-horizontal<br>Gently inclined<br>Moderately<br>inclined<br>Steeply inclined<br>Very steeply<br>inclined<br>Sub vertical<br>SENSITIVITY OF<br>Descriptive Term                                           | alues.<br>ATION<br>Inclinatio<br>0° - 5°<br>6° - 15°<br>16° - 30°<br>31° - 60°<br>61° - 80°<br>81° - 90°<br>SOIL<br>Sha<br>Rat | on (from horizonta)<br>ear Strength<br>tio = $\frac{undisturbed}{remoulded}$ |  |  |
| Very loose<br>Note:<br>MOISTURI<br>Condition<br>Dry<br>Moist<br>Wet<br>Saturated<br>PLASTICIT<br>Ferm | Feels cool,<br>darkened<br>in colour                                                                                | < 15 rength data a ation is implivalues are un Coarse Soils Runs freely through hands Tends to cohere , darkened in is present or SILTS) Description Can be mo cracking o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | cannot be con<br>ed between S<br>ncorrected.<br>Fine Soils<br>Hard,<br>powdery or<br>friable<br>Weakened<br>by<br>moisture,<br>but no free<br>water on<br>hands<br>when<br>remoulding<br>Weakened<br>by<br>moisture,<br>free water<br>forms on<br>hands<br>when<br>n colour and<br>n the sample           | < 4<br>firmed Loosely R<br>tandard Penetra<br>Abbreviation<br>D<br>M<br>W<br>W<br>S<br>s | Packed (LP) a<br>titon Test (SP<br>BEDDING<br>Term<br>Thinly lan<br>Laminate<br>Very thin<br>Thin<br>Moderate<br>Thick<br>Very thick<br>Very thick<br>e range of mu | PT) and Dy<br>G THICKN<br>minated<br>ed<br>ely thin<br>ely thick<br>k                | 0 - 2       y Packed (TP) may b<br>ynamic Cone Penetro       IESS (Sedimentary)       Bed Thickness       < 2mm                                                                                   | BEDDING INCLIN<br>Term<br>Sub-horizontal<br>Gently inclined<br>Moderately<br>inclined<br>Steeply inclined<br>Very steeply<br>inclined<br>Sub vertical<br>SENSITIVITY OF<br>Descriptive Term<br>Insensitive, norm<br>Moderately sensit | alues.<br>ATION<br>Inclinatio<br>0° - 5°<br>6° - 15°<br>16° - 30°<br>31° - 60°<br>61° - 80°<br>81° - 90°<br>SOIL<br>Sha<br>Rat | ear Strength<br>tio = $\frac{undisturbed}{remoulded}$<br>< 2<br>2 - 4        |  |  |



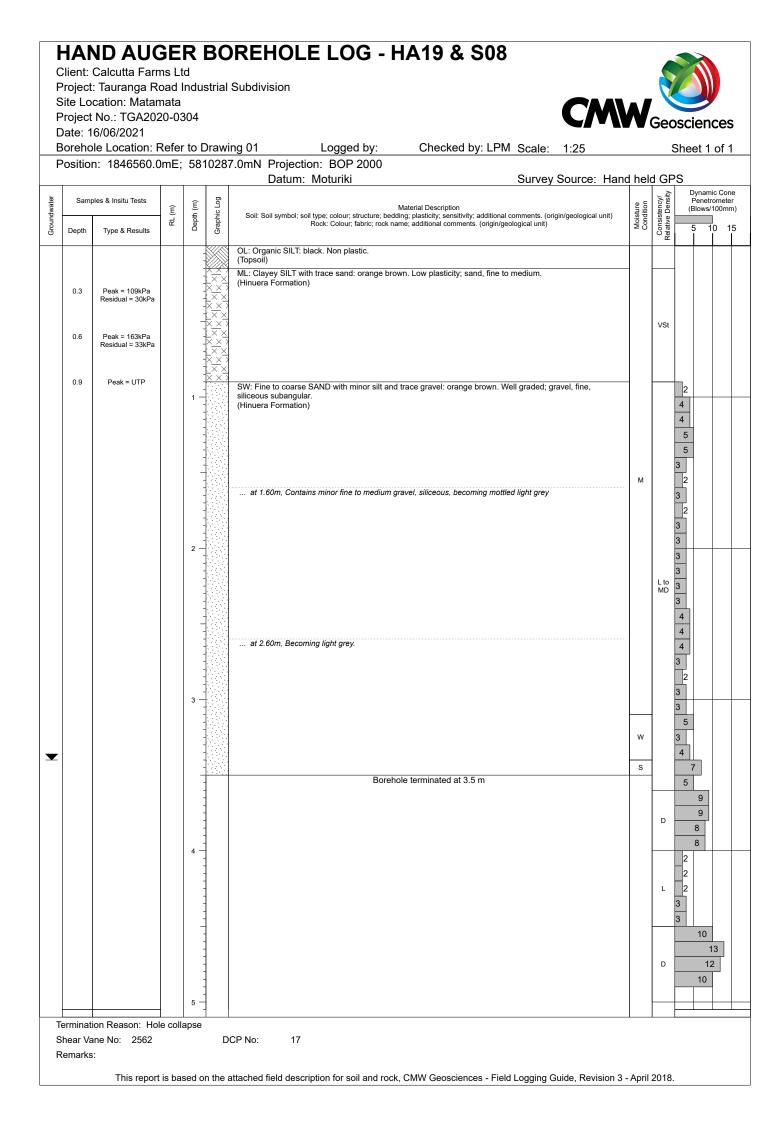




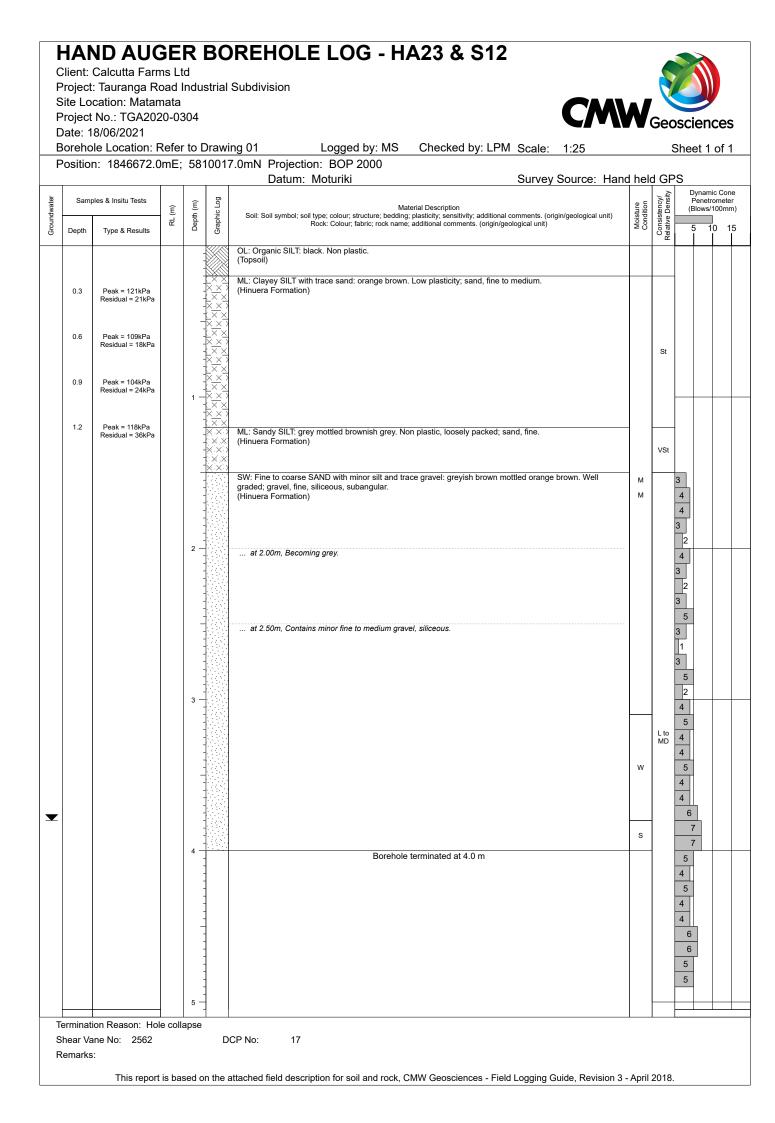


#### HAND AUGER BOREHOLE LOG - HA06 & S05 Client: Calcutta Farms Ltd Project: Tauranga Road Industrial Subdivision Site Location: Matamata Geosciences Project No.: TGA2020-0304 Date: 16/06/2021 Borehole Location: Refer to Drawing 01 Logged by: MS Checked by: LPM Scale: Sheet 1 of 1 1:25 Position: 1846204.0mE; 5810507.0mN Projection: BOP 2000 Datum: Moturiki Survey Source: Hand held GPS Consistency/ Relative Density Dynamic Cone Penetrometer Samples & Insitu Tests **Graphic Log** Groundwate Ē Moisture Condition Material Description Soil: Soil symbol; soil type; colour; structure; bedding; plasticity; sensitivity; additional comments. (origin/geological unit) Rock: Colour; fabric; rock name; additional comments. (origin/geological unit) Ē (Blows/100mm) Depth Ч 10 15 5 Depth Type & Results OL: Organic SILT: black. Non plastic. (Topsoil) ML: Clayey SILT with trace sand: orange brown. Low plasticity; sand, fine to medium. Peak = 151kPa Residual = 30kPa 0.3 (Hinuera Formation) М VSt to H ... at 0.55m, Becoming light brown. 0.6 Peak = >207kPa ... at 0.80m, Becoming mottled orange brown. 0.9 Peak = >207kPa SM: Silty fine SAND: white. Poorly graded. 4 (Hinuera Formation) 7 5 D to 6 MD Μ 6 6 5 5 SW: Fine to medium SAND with some silt: dark grey mottled light grey. Well graded, siliceous, subangular. 6 (Hinuera Formation) 7 2 MD to D 8 М 6 7 7 SW: Fine to coarse SAND with minor silt and trace gravel: dark grey. Well graded; gravel, fine to medium, 9 siliceous, subangular (Hinuera Formation) 7 8 9 8 8 3 10 10 8 ... at 3.30m, Contains minor fine to medium gravel, siliceous. 9 9 13 10 D to D Μ 10 9 13 4 11 10 11 11 8 8 7 10 11 5 Borehole terminated at 5.0 m Termination Reason: Target depth Shear Vane No: 2562 DCP No: 17 Remarks: Groundwater not encountered. This report is based on the attached field description for soil and rock, CMW Geosciences - Field Logging Guide, Revision 3 - April 2018.

| C<br>P<br>S | lient:<br>roject<br>ite Lo | ND AUC<br>Calcutta Farr<br>: Tauranga R<br>cation: Matar<br>No.: TGA202 | ns Li<br>oad<br>nata | td<br>Indu |                                                                                 | Subdivision                                                                                                                                                       | N                     |                                  |             |                                     |
|-------------|----------------------------|-------------------------------------------------------------------------|----------------------|------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------|-------------|-------------------------------------|
| D           | ate: 1                     | 6/06/2021                                                               |                      |            |                                                                                 |                                                                                                                                                                   |                       |                                  |             |                                     |
|             |                            | le Location: I<br>n: 1846223.0                                          |                      |            |                                                                                 | ing 01 Logged by: MS Checked by: LPM Scale: 1:25<br>6.0mN Projection: BOP 2000<br>Datum: Moturiki Survey Source: Hand                                             | d hele                |                                  | Sheet       | <u>1 of 1</u>                       |
| Groundwater | Samp                       | oles & Insitu Tests                                                     | RL (m)               | Depth (m)  | Graphic Log                                                                     | Material Description<br>Soil: Soil symbol; soil type; colour; structure; bedding; plasticity; sensitivity; additional comments. (origin/geological unit)          | Moisture<br>Condition | Consistency/<br>Relative Density |             | amic Cone<br>etrometer<br>/s/100mm) |
| Groun       | Depth                      | Type & Results                                                          | RL                   | Dept       | Grapt                                                                           | Rock: Colour, fabric; rock name; additional comments. (origin/geological unit)                                                                                    | Con                   | Consi<br>Relative                | 5           | 10 15                               |
|             |                            |                                                                         |                      |            |                                                                                 | OL: Organic SILT: black. Non plastic.<br>(Topsoil)<br>ML: Clayey SILT with trace sand: orange brown. Low plasticity; sand, fine to medium.                        |                       |                                  |             |                                     |
|             | 0.3                        | Peak = 163kPa<br>Residual = 30kPa                                       |                      |            |                                                                                 | (Hinuera Formation)                                                                                                                                               |                       |                                  |             |                                     |
|             | 0.6                        | Peak = 80kPa<br>Residual = 30kPa                                        |                      | -          |                                                                                 | at 0.50m, Becoming light brown.                                                                                                                                   | м                     | St to<br>VSt                     |             |                                     |
|             | 0.9                        | Peak = 124kPa                                                           |                      |            |                                                                                 | at 0.65m, Contains some fine sand.                                                                                                                                |                       |                                  |             |                                     |
|             | 0.9                        | Residual = 27kPa                                                        |                      | 1 -        |                                                                                 | SM: Silty fine SAND: white. Poorly graded.                                                                                                                        |                       |                                  | 2           |                                     |
|             |                            |                                                                         |                      |            | × × ;<br>× × ;                                                                  | at 1.10m, Contains 100mm wide silt lenses every 100mm.                                                                                                            |                       |                                  | 2<br>3<br>3 |                                     |
|             |                            |                                                                         |                      | -          | * *<br>* *<br>* *                                                               |                                                                                                                                                                   |                       |                                  | 3 3         |                                     |
|             |                            |                                                                         |                      |            | * *<br>- * *<br>- * *                                                           |                                                                                                                                                                   |                       |                                  | 3<br>3      |                                     |
|             |                            |                                                                         |                      | 2 -        |                                                                                 | SP: Silty fine SAND: white. Poorly graded.<br>(Hinuera Formation)                                                                                                 | -                     | L to                             | 2<br>3      |                                     |
|             |                            |                                                                         |                      |            | - × · · · ·<br>- × · × ·<br>- × · · ·                                           |                                                                                                                                                                   |                       | MD                               | 4<br>5<br>5 |                                     |
|             |                            |                                                                         |                      |            | * * *<br>* *<br>* * *                                                           |                                                                                                                                                                   |                       |                                  | 5           |                                     |
|             |                            |                                                                         |                      | -          | -X<br>-X<br>-X<br>-X<br>-X<br>-X<br>-X<br>-X<br>-X<br>-X<br>-X<br>-X<br>-X<br>- |                                                                                                                                                                   |                       |                                  | 4 5         |                                     |
|             |                            |                                                                         |                      |            | * ^ ;<br>* * ;<br>* * ;                                                         |                                                                                                                                                                   |                       |                                  | 5           |                                     |
|             |                            |                                                                         |                      | 3 -        |                                                                                 | ML: SILT: grey mottled brownish orange. Non plastic, tightly packed.<br>(Hinuera Formation)                                                                       | D to<br>M             | н                                | 6<br>6<br>6 |                                     |
|             |                            |                                                                         |                      |            |                                                                                 | SW: Fine to coarse SAND with minor silt and trace gravel: dark yellowish grey. Well graded; gravel, fine to medium, siliceous, subangular.<br>(Hinuera Formation) | -                     |                                  |             | 12                                  |
|             |                            |                                                                         |                      | -          |                                                                                 | from 3.40m to 3.50m, Contains minor fine to medium gravel, pumiceous, becoming brownish orange.                                                                   |                       |                                  | 9<br>10     |                                     |
|             |                            |                                                                         |                      |            |                                                                                 | at 3.60m, Becoming grey.<br>at 3.70m, Contains minor fine to medium gravel, siliceous.                                                                            |                       |                                  |             | 14<br>16                            |
|             |                            |                                                                         |                      | 4 -        |                                                                                 |                                                                                                                                                                   |                       |                                  |             | 19<br>14<br>13                      |
|             |                            |                                                                         |                      |            |                                                                                 |                                                                                                                                                                   |                       | D to<br>VD                       |             | 11                                  |
|             |                            |                                                                         |                      | _          |                                                                                 |                                                                                                                                                                   |                       |                                  | 1           | 13                                  |
|             |                            |                                                                         |                      |            |                                                                                 |                                                                                                                                                                   |                       |                                  |             | 14<br>14<br>12                      |
|             |                            |                                                                         |                      | _          | -                                                                               |                                                                                                                                                                   |                       |                                  |             | 14                                  |
| т-          | arminat                    | ion Reason: Tar                                                         |                      | 5 -        | -                                                                               | Borehole terminated at 5.0 m                                                                                                                                      |                       |                                  |             |                                     |
| S           | hear Va                    | ane No: 2562                                                            | -                    | -          |                                                                                 | CP No: 17                                                                                                                                                         |                       |                                  |             |                                     |
|             |                            | This report                                                             | t is ha              | sed o      | n the                                                                           | attached field description for soil and rock, CMW Geosciences - Field Logging Guide, Revision 3 -                                                                 | Δnril                 | 2018                             |             |                                     |

| C<br>F<br>S<br>F<br>C | Client:<br>Project<br>Site Lo<br>Project<br>Date: 1 | Calcutta Farr<br>: Tauranga R<br>cation: Matar<br>No.: TGA202<br>7/06/2021 | ns L<br>oad<br>nata<br>20-0 | td<br>Indu<br>304 | strial                   | CM                                                                                                                                                                                                                                         | N                     |                                  |                                                               |                                  |   |
|-----------------------|-----------------------------------------------------|----------------------------------------------------------------------------|-----------------------------|-------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------|---------------------------------------------------------------|----------------------------------|---|
|                       |                                                     | le Location: I<br>n: 1846084.0                                             |                             |                   |                          | ing 01 Logged by: MS Checked by: LPM Scale: 1:25<br>2.0mN Projection: BOP 2000                                                                                                                                                             |                       |                                  | Sheet 1                                                       | of 1                             |   |
|                       |                                                     |                                                                            | 1                           | ,                 | 1                        | Datum: Moturiki Survey Source: Han                                                                                                                                                                                                         | d hel                 |                                  |                                                               | nic Cone                         |   |
| Groundwater           | Samp<br>Depth                                       | oles & Insitu Tests<br>Type & Results                                      | RL (m)                      | Depth (m)         | Graphic Log              | Material Description<br>Soil: Soil symbol; soil type; colour; structure; bedding; plasticity; sensitivity; additional comments. (origin/geological unit)<br>Rock: Colour; fabric; rock name; additional comments. (origin/geological unit) | Moisture<br>Condition | Consistency/<br>Relative Density | Penel<br>(Blows                                               | rometer<br>/100mm)<br>]<br>10 15 | ) |
|                       | 0.3                                                 | Peak = 89kPa<br>Residual = 24kPa                                           |                             |                   |                          | OL: Organic SILT: black. Non plastic.<br>(Topsoil)<br>ML: Clayey SILT with trace sand: orange brown. Low plasticity; sand, fine to medium.<br>(Hinuera Formation)                                                                          | м                     | <u> </u>                         |                                                               |                                  |   |
|                       | 0.6<br>0.9                                          | Peak = 136kPa<br>Residual = 36kPa<br>Peak = 89kPa<br>Residual = 15kPa      |                             |                   |                          | at 0.60m, Contains some fine to medium sand.                                                                                                                                                                                               |                       | St to<br>VSt                     |                                                               |                                  |   |
|                       | 1.2                                                 | Peak = 80kPa<br>Residual = 21kPa                                           |                             | 1 -               |                          |                                                                                                                                                                                                                                            | w                     |                                  |                                                               |                                  |   |
|                       | 1.6                                                 | Peak = UTP                                                                 |                             | 2                 |                          | SW: Fine to coarse SAND with trace silt and trace gravel: grey. Well graded; gravel, fine, siliceous, subangular.<br>(Hinuera Formation)<br>at 2.10m, Contains minor fine to medium gravel, siliceous.                                     | D to<br>M             | MD to<br>D                       | 6<br>6<br>7<br>9<br>9                                         |                                  |   |
|                       |                                                     |                                                                            |                             |                   | × ×<br>× ×<br>× ×<br>× × | SM: Silty fine SAND: white. Poorly graded.<br>(Hinuera Formation)<br>ML: SILT: grey mottled brownish orange. Non plastic, loosely packed.<br>(Hinuera Formation)                                                                           | M to                  | MD                               | 4<br>5<br>5<br>3                                              |                                  |   |
|                       |                                                     |                                                                            |                             |                   |                          | SM: Silty fine SAND: grey. Poorly graded.<br>(Hinuera Formation)<br>SW: Fine to coarse SAND with trace silt and minor gravel: grey. Well graded; gravel, fine, siliceous,<br>subangular.<br>(Hinuera Formation)                            | w                     | MD                               | 2<br>3<br>5<br>9<br>8<br>6                                    |                                  |   |
|                       |                                                     |                                                                            |                             | 4                 |                          | from 4.30m to 4.50m, Contains pumiceous gravel.                                                                                                                                                                                            | D to<br>M             | D                                | 6<br>11<br>11<br>8<br>9<br>9<br>9<br>9<br>10<br>10<br>10<br>9 |                                  |   |
|                       |                                                     |                                                                            |                             | 5 -               |                          | Borehole terminated at 5.0 m                                                                                                                                                                                                               |                       |                                  |                                                               |                                  | _ |
| S                     | hear Va                                             | ion Reason: Tar<br>ane No: 2562<br>:: Groundwater i                        | not er                      | ncoun             | tered.                   | CP No: 17                                                                                                                                                                                                                                  |                       |                                  |                                                               |                                  |   |


#### HAND AUGER BOREHOLE LOG - HA09 & S03 Client: Calcutta Farms Ltd Project: Tauranga Road Industrial Subdivision Site Location: Matamata Geosciences Project No.: TGA2020-0304 Date: 17/06/2021 Borehole Location: Refer to Drawing 01 Logged by: MS Checked by: LPM Scale: Sheet 1 of 1 1:25 Position: 1846012.0mE; 5810185.0mN Projection: BOP 2000 Datum: Moturiki Survey Source: Hand held GPS Consistency/ Relative Density Dynamic Cone Penetrometer Samples & Insitu Tests **Graphic Log** Groundwate Ē Moisture Condition Material Description Soil: Soil symbol; soil type; colour; structure; bedding; plasticity; sensitivity; additional comments. (origin/geological unit) Rock: Colour; fabric; rock name; additional comments. (origin/geological unit) Ē (Blows/100mm) Depth Ч 10 15 5 Depth Type & Results OL: Organic SILT: black. Non plastic. (Topsoil) ML: Clayey SILT with trace sand: orange brown. Low plasticity; sand, fine to medium. Peak = 130kPa Residual = 21kPa 0.3 (Hinuera Formation) St to VSt Peak = 95kPa Residual = 18kPa 0.6 SM: Silty fine to medium SAND: brown. Poorly graded, siliceous, subangular. (Hinuera Formation) 1 3 3 L 2 SW: Fine to coarse SAND with some silt: grey mottled yellowish brown. Well graded, siliceous, subangular. 2 (Hinuera Formation) М 2 1 1 2 2 3 2 4 L to MD 4 5 5 5 5 6 7 4 SM: Silty fine SAND: light grey. Poorly graded. 3 3 (Hinuera Formation) MD 3 ML: SILT: grey mottled brownish orange. Non plastic, loosely packed. M to W × 2 (Hinuera Formation) 3 2 SW: Fine to coarse SAND with minor gravel and trace silt: grey. Well graded; gravel, fine to medium, 9 siliceous, subangular (Hinuera Formation) 10 15 16 14 10 4 13 14 D to M D 14 14 13 15 13 14 15 5 Borehole terminated at 5.0 m Termination Reason: Target depth Shear Vane No: 2562 DCP No: 17 Remarks: Groundwater not encountered. This report is based on the attached field description for soil and rock, CMW Geosciences - Field Logging Guide, Revision 3 - April 2018.






# HAND AUGER BOREHOLE LOG - HA16 & S10

### HAND AUGER BOREHOLE LOG - HA18 & S09 Client: Calcutta Farms Ltd Project: Tauranga Road Industrial Subdivision Site Location: Matamata Geosciences Project No.: TGA2020-0304 Date: 16/06/2021 Borehole Location: Refer to Drawing 01 Logged by: MS Checked by: LPM Scale: Sheet 1 of 1 1:25 Position: 1846475.0mE; 5810141.0mN Projection: BOP 2000 Datum: Moturiki Survey Source: Hand held GPS Consistency/ Relative Density Dynamic Cone Penetrometer Samples & Insitu Tests **Graphic Log** Groundwater Ē Moisture Condition Material Description Soil: Soil symbol; soil type; colour; structure; bedding; plasticity; sensitivity; additional comments. (origin/geological unit) Rock: Colour; fabric; rock name; additional comments. (origin/geological unit) Ē (Blows/100mm) Depth ( Ч 5 10 15 Depth Type & Results OL: Organic SILT: black. Non plastic. (Topsoil) ML: Clayey SILT with trace sand: orange brown. Low plasticity; sand, fine to medium. Peak = 133kPa Residual = 36kPa 0.3 (Hinuera Formation) Peak = 104kPa Residual = 21kPa 0.6 Μ $\frac{1}{\times}$ ... from 0.85m to 1.00m, Becoming brown, contains some fine to coarse sand. 0.9 Peak = >207kPa VSt to H 1 ... at 1.00m, Becoming mottled brownish grey. Peak = 109kPa Residual = 30kPa 1.2 1.6 Peak = 112kPa Residual = 30kPa ML: Sandy SILT: light grey streaked orange brown. Non plastic; sand, fine. (Hinuera Formation) VSt X 2.0 Peak = 118kPa Residual = 44kPa 2 SW: Fine to coarse SAND with minor silt and trace gravel: orange brown mottled grey. Well graded; gravel, 2 fine, siliceous, subangular. 3 3 3 3 2 (Hinuera Formation) w 2 2 3 ▼ 4 s 3 4 Borehole terminated at 3.1 m 5 5 6 5 L to MD 6 6 6 4 4 4 6 6 7 6 6 7 5 5 6 5 Termination Reason: Hole collapse Shear Vane No: 2562 DCP No: 17 Remarks: This report is based on the attached field description for soil and rock, CMW Geosciences - Field Logging Guide, Revision 3 - April 2018.



| ŀ           | <b>IAH</b> | ND AU                         | GE       | R             | BC                | REHOLE LOG - HA22 & S11                                                                                                                                  |                       |                                  |        |                     |          |
|-------------|------------|-------------------------------|----------|---------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------|--------|---------------------|----------|
|             |            | Calcutta Far                  |          |               | - 4               | Cub division                                                                                                                                             |                       |                                  |        |                     |          |
|             |            | : Tauranga R<br>cation: Matar |          |               | striai            |                                                                                                                                                          | _                     |                                  |        | y                   |          |
| P           | Project    | No.: TGA20                    |          |               |                   | CM                                                                                                                                                       | N                     | Geo                              | oscie  | nce                 | s        |
|             |            | 4/06/2021<br>le Location: l   | Refer    | r to [        | Drawi             | ng 01 Logged by: MS Checked by: LPM Scale: 1:25                                                                                                          |                       |                                  | Sheet  |                     |          |
|             |            |                               |          |               |                   | 8.0mN Projection: BOP 2000                                                                                                                               |                       |                                  |        |                     |          |
|             |            |                               |          |               |                   | Datum: Moturiki Survey Source: Han                                                                                                                       | d hel                 |                                  |        | amic Co             | ne       |
| Groundwater | Sam        | oles & Insitu Tests           | RL (m)   | Depth (m)     | Graphic Log       | Material Description<br>Soil: Soil symbol; soil type; colour; structure; bedding; plasticity; sensitivity; additional comments. (origin/geological unit) | Moisture<br>Condition | Consistency/<br>Relative Density | Per    | netromet<br>ws/100m | ter      |
| Groun       | Depth      | Type & Results                | RL       | Dept          | Graph             | Rock: Colour, fabric; rock name; additional comments. (origin/geological unit)                                                                           | Mois                  | Consis<br>elative                | 5      | 10                  | 15       |
|             |            |                               |          |               |                   | OL: Organic SILT: black. Non plastic.                                                                                                                    |                       | ~                                |        | _                   | _        |
|             |            |                               |          |               |                   | (Topsoil) ML: Clayey SILT with trace sand: orange brown. Low plasticity; sand, fine to medium.                                                           | -                     |                                  |        |                     |          |
|             | 0.3        | Peak = 80kPa                  |          |               |                   | (Hinuera Formation)                                                                                                                                      |                       |                                  |        |                     |          |
|             |            | Residual = 30kPa              |          |               |                   |                                                                                                                                                          |                       |                                  |        |                     |          |
|             | 0.6        | Peak = 98kPa                  |          | -             |                   |                                                                                                                                                          |                       | St to<br>VSt                     |        |                     |          |
|             | 0.0        | Residual = 24kPa              |          |               | $(\times \times)$ |                                                                                                                                                          |                       |                                  |        |                     |          |
|             |            |                               |          |               |                   |                                                                                                                                                          |                       |                                  |        |                     |          |
|             |            |                               |          | 1 -           | (XX               | at 0.90m, Contains some sand.<br>SW: Fine to coarse SAND with minor silt and trace gravel: greyish brown mottled orange brown. Well                      | 1                     |                                  |        |                     |          |
|             |            |                               |          |               |                   | graded; gravel, fine, siliceous, subangular.<br>(Hinuera Formation)                                                                                      |                       |                                  | 3<br>3 |                     |          |
|             |            |                               |          |               |                   |                                                                                                                                                          |                       |                                  | 3      |                     |          |
|             |            |                               |          |               |                   |                                                                                                                                                          |                       |                                  | 2      |                     |          |
|             |            |                               |          | -             |                   | at 1.50m, Contains minor silt, becoming light orange.                                                                                                    |                       |                                  | 1      |                     |          |
|             |            |                               |          |               |                   |                                                                                                                                                          |                       |                                  | 2      |                     |          |
|             |            |                               |          |               |                   |                                                                                                                                                          |                       |                                  | 1      |                     |          |
|             |            |                               |          |               |                   | at 1.80m, Becoming yellowish grey.                                                                                                                       |                       |                                  | 1      |                     |          |
|             |            |                               |          | 2 -           |                   |                                                                                                                                                          |                       |                                  | 2      |                     | +        |
|             |            |                               |          |               |                   |                                                                                                                                                          |                       |                                  | 3      |                     |          |
|             |            |                               |          |               |                   | at 2.30m, Becoming brownish grey.                                                                                                                        |                       |                                  | 1      |                     |          |
|             |            |                               |          | _             |                   |                                                                                                                                                          | м                     |                                  | 4      |                     |          |
|             |            |                               |          |               |                   |                                                                                                                                                          |                       |                                  | 1      |                     |          |
|             |            |                               |          |               |                   |                                                                                                                                                          |                       |                                  | 1      |                     |          |
|             |            |                               |          |               |                   |                                                                                                                                                          |                       |                                  | 3      |                     |          |
|             |            |                               |          | з —           |                   | at 2.90m, Becoming light grey.                                                                                                                           |                       | L to<br>MD                       | 2      | _                   | -        |
|             |            |                               |          |               |                   |                                                                                                                                                          |                       |                                  | 3      |                     |          |
|             |            |                               |          |               |                   |                                                                                                                                                          |                       |                                  | 1      |                     |          |
|             |            |                               |          |               |                   |                                                                                                                                                          |                       |                                  | 3      |                     |          |
|             |            |                               |          | -             |                   |                                                                                                                                                          |                       |                                  | 3      |                     |          |
|             |            |                               |          |               |                   |                                                                                                                                                          |                       |                                  | 4      |                     |          |
|             |            |                               |          |               |                   |                                                                                                                                                          |                       |                                  | 3      |                     |          |
|             |            |                               |          |               |                   |                                                                                                                                                          |                       |                                  | 4      |                     |          |
|             |            |                               |          | 4 -           |                   |                                                                                                                                                          |                       |                                  | 7      |                     |          |
|             |            |                               |          |               |                   |                                                                                                                                                          |                       |                                  | 5<br>5 |                     |          |
|             |            |                               |          |               |                   |                                                                                                                                                          |                       |                                  | 5      |                     |          |
|             |            |                               |          | -             |                   |                                                                                                                                                          | 1                     |                                  | 6      |                     |          |
|             |            |                               |          |               |                   |                                                                                                                                                          | 1                     |                                  | 6<br>5 |                     |          |
|             |            |                               |          |               |                   |                                                                                                                                                          | 1                     |                                  | 4      |                     |          |
|             |            |                               |          |               |                   |                                                                                                                                                          |                       |                                  | 4      |                     |          |
|             | L          |                               | _        | 5 -           |                   | Borehole terminated at 5.0 m                                                                                                                             |                       |                                  |        |                     | <u> </u> |
|             |            | ion Reason: Tai               | rget de  | epth          |                   |                                                                                                                                                          |                       | •                                |        |                     |          |
|             |            | ane No: 2562<br>: Groundwater | not en   | ICOUN         |                   | CP No: 17                                                                                                                                                |                       |                                  |        |                     |          |
|             |            |                               |          |               |                   | attached field description for soil and rock, CMW Geosciences - Field Logging Guide, Revision 3                                                          | - Anril               | 2012                             |        |                     |          |
|             |            | This repor                    | , is nd: | 35 <b>0</b> 0 |                   | accented new description for son and rock, Onite Geosciences - Lield Logging Guide, Revision 3                                                           | , while               | 2010.                            |        |                     |          |



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | Coloutte Ferry                | -          | FAL         |                             | EAD 3            | OAKAGE TEST              | Matamata                                  |                               |               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|------------|-------------|-----------------------------|------------------|--------------------------|-------------------------------------------|-------------------------------|---------------|
| ENT:<br>DJECT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               | Calcutta Farm<br>Tauranga Roa |            | al Qubdie   | ision                       |                  | LOCATION:<br>JOB NUMBER: | Matamata<br>TGA2020-0304                  |                               |               |
| T LOCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               | S01                           | a maustri  |             | ISION                       |                  | TEST DATE:               | 27/07/2021                                |                               |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |                               |            |             |                             |                  |                          |                                           |                               |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Diameter                      |                               |            | 0.10        |                             |                  | Base Area 'B'            | 0.008                                     |                               |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Depth 'D'                     |                               |            | 4.00        |                             |                  | Circumference 'C'        | 0.314                                     | m2                            |               |
| undwat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ter Level                     |                               | Not En     | countered   | m                           |                  |                          |                                           |                               |               |
| ïme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Water Level BGL               | Water depth                   | Time       | steps       | Depth                       | steps            | Volume soaked            | Soakage surface area                      | Soaka                         | ge Rate       |
| Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d                             | =D-d                          | t0         | t1          | h0 .                        | h1               | V=(h0-h1)*B              | A=(C*(h0+h1)/2)+B                         | SR=V/A/(t1-t0)                | SR*60*60*1    |
| nin<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <i>m</i><br>1.23              | <b>m</b><br>2.77              | sec        | sec         | m                           | т<br>-           | m3                       | m2                                        | m3/m2/sec                     | litres/m2/h   |
| 0<br>).17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.25                          | 2.65                          | -<br>0     | - 10        | -<br>2.77                   | 2.65             | -<br>9.42E-04            | - 0.86                                    | -<br>1.1E-04                  | 394.9         |
| ).33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.35                          | 2.55                          | 10         | 20          | 2.65                        | 2.05             | 9.42E-04<br>7.85E-04     | 0.80                                      | 9.5E-05                       | 394.9         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |                               | 20         |             |                             |                  | 7.07E-04                 |                                           |                               |               |
| ).50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.54                          | 2.46                          |            | 30          | 2.55                        | 2.46             |                          | 0.79                                      | 8.9E-05                       | 320.2         |
| ).67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.62                          | 2.38                          | 30         | 40          | 2.46                        | 2.38             | 6.28E-04                 | 0.77                                      | 8.2E-05                       | 294.5         |
| 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.70                          | 2.30                          | 40         | 50          | 2.38                        | 2.30             | 6.28E-04                 | 0.74                                      | 8.5E-05                       | 304.4         |
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.76                          | 2.24                          | 50         | 60          | 2.30                        | 2.24             | 4.71E-04                 | 0.72                                      | 6.5E-05                       | 235.3         |
| 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.87                          | 2.13                          | 60         | 90          | 2.24                        | 2.13             | 8.64E-04                 | 0.69                                      | 4.1E-05                       | 149.3         |
| 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.01                          | 1.99                          | 90         | 120         | 2.13                        | 1.99             | 1.10E-03                 | 0.66                                      | 5.6E-05                       | 201.4         |
| 2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.13                          | 1.87                          | 120        | 150         | 1.99                        | 1.87             | 9.42E-04                 | 0.61                                      | 5.1E-05                       | 184.1         |
| 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.23                          | 1.77                          | 150        | 180         | 1.87                        | 1.77             | 7.85E-04                 | 0.58                                      | 4.5E-05                       | 162.6         |
| 3.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.32                          | 1.68                          | 180        | 210         | 1.77                        | 1.68             | 7.07E-04                 | 0.55                                      | 4.3E-05                       | 154.3         |
| 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.40                          | 1.60                          | 210        | 240         | 1.68                        | 1.60             | 6.28E-04                 | 0.52                                      | 4.0E-05                       | 144.1         |
| 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.46                          | 1.54                          | 240        | 270         | 1.60                        | 1.54             | 4.71E-04                 | 0.50                                      | 3.1E-05                       | 112.9         |
| 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.52                          | 1.48                          | 270        | 300         | 1.54                        | 1.48             | 4.71E-04                 | 0.48                                      | 3.3E-05                       | 117.3         |
| 6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.62                          | 1.38                          | 300        | 360         | 1.48                        | 1.38             | 7.85E-04                 | 0.46                                      | 2.9E-05                       | 103.1         |
| .00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.70                          | 1.30                          | 360        | 420         | 1.38                        | 1.30             | 6.28E-04                 | 0.43                                      | 2.4E-05                       | 87.9          |
| 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.78                          | 1.22                          | 420        | 480         | 1.30                        | 1.22             | 6.28E-04                 | 0.40                                      | 2.6E-05                       | 93.4          |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.84                          | 1.16                          | 480        | 540         | 1.22                        | 1.16             | 4.71E-04                 | 0.38                                      | 2.1E-05                       | 74.1          |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.89                          | 1.11                          | 540        | 600         | 1.16                        | 1.10             | 3.93E-04                 | 0.36                                      | 1.8E-05                       | 64.7          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.03                          |                               |            |             |                             |                  |                          | 0.32                                      | 1.7E-05                       | 61.2          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 10                          |                               |            |             |                             |                  |                          |                                           |                               |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.10<br>3.24                  | 0.90<br>0.76                  | 600<br>900 | 900<br>1200 | 1.11<br>0.90                | 0.90<br>0.76     | 1.65E-03<br>1.10E-03     | 0.27<br>Considered average                | 1.4E-05<br>4.8E-05            | 49.1          |
| 5.00<br>0.00<br>e: Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               | 0.76                          | 900        |             |                             |                  |                          | 0.27                                      | 1.4E-05<br>4.8E-05            | 49.1<br>173.9 |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.24                          | 0.76                          | 900        | 1200        |                             | 0.76             | 1.10E-03                 | 0.27<br>Considered average                | 1.4E-05<br>4.8E-05            | 49.1<br>173.9 |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.24                          | 0.76                          | 900        | 1200        | 0.90<br>oakage R            | 0.76             | 1.10E-03                 | 0.27<br>Considered average                | 1.4E-05<br>4.8E-05            | 49.1<br>173.9 |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.24                          | 0.76                          | 900        | 1200        | 0.90<br>oakage R<br>Time (r | 0.76<br>esults S | 1.10E-03                 | 0.27<br>Considered average                | 1.4E-05<br>4.8E-05            | 49.1<br>173.9 |
| 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.24<br>s struck out were not | 0.76                          | 900        | 1200<br>S   | 0.90<br>oakage R<br>Time (r | 0.76<br>esults S | 1.10E-03                 | 0.27<br>Considered average<br>Design rate | 1.4E-05<br>4.8E-05<br>2.4E-05 | 49.1<br>173.9 |
| 0.00<br>e: Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.24<br>s struck out were not | 0.76                          | 900        | 1200<br>S   | 0.90<br>oakage R<br>Time (r | 0.76<br>esults S | 1.10E-03                 | 0.27<br>Considered average<br>Design rate | 1.4E-05<br>4.8E-05<br>2.4E-05 | 49.1<br>173.9 |
| 0.00<br>e: Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.24<br>s struck out were not | 0.76                          | 900        | 1200<br>S   | 0.90<br>oakage R<br>Time (r | 0.76<br>esults S | 1.10E-03                 | 0.27<br>Considered average<br>Design rate | 1.4E-05<br>4.8E-05<br>2.4E-05 | 49.1<br>173.9 |
| 0.00<br>e: Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.24<br>s struck out were not | 0.76                          | 900        | 1200<br>S   | 0.90<br>oakage R<br>Time (r | 0.76<br>esults S | 1.10E-03                 | 0.27<br>Considered average<br>Design rate | 1.4E-05<br>4.8E-05<br>2.4E-05 | 49.1<br>173.9 |
| 0.00<br>e: Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.24<br>s struck out were not | 0.76                          | 900        | 1200<br>S   | 0.90<br>oakage R<br>Time (r | 0.76<br>esults S | 1.10E-03                 | 0.27<br>Considered average<br>Design rate | 1.4E-05<br>4.8E-05<br>2.4E-05 | 49.1<br>173.9 |
| 0.00<br>e: Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.24<br>s struck out were not | 0.76                          | 900        | 1200<br>S   | 0.90<br>oakage R<br>Time (r | 0.76<br>esults S | 1.10E-03                 | 0.27<br>Considered average<br>Design rate | 1.4E-05<br>4.8E-05<br>2.4E-05 | 49.1<br>173.9 |
| 00.00<br>e: Test<br>0.0<br>0.5<br>0.5<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.24<br>s struck out were not | 0.76                          | 900        | 1200<br>S   | 0.90<br>oakage R<br>Time (r | 0.76<br>esults S | 1.10E-03                 | 0.27<br>Considered average<br>Design rate | 1.4E-05<br>4.8E-05<br>2.4E-05 | 49.1<br>173.9 |
| 00.00<br>e: Test<br>0.0<br>0.5<br>0.5<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.24                          | 0.76                          | 900        | 1200<br>S   | 0.90<br>oakage R<br>Time (r | 0.76<br>esults S | 1.10E-03                 | 0.27<br>Considered average<br>Design rate | 1.4E-05<br>4.8E-05<br>2.4E-05 | 49.1<br>173.9 |
| 0.00<br>e: Test<br>0.0<br>0.5<br>0.5<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.24                          | 0.76                          | 900        | 1200<br>S   | 0.90<br>oakage R<br>Time (r | 0.76<br>esults S | 1.10E-03                 | 0.27<br>Considered average<br>Design rate | 1.4E-05<br>4.8E-05<br>2.4E-05 | 49.1<br>173.9 |
| 0.00<br>e: Test<br>0.0<br>0.5<br>0.5<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.24                          | 0.76                          | 900        | 1200<br>S   | 0.90<br>oakage R<br>Time (r | 0.76<br>esults S | 1.10E-03                 | 0.27<br>Considered average<br>Design rate | 1.4E-05<br>4.8E-05<br>2.4E-05 | 49.1<br>173.9 |
| 00.00<br>e: Test<br>0.0<br>0.5<br>0.5<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.24                          | 0.76                          | 900        | 1200<br>S   | 0.90<br>oakage R<br>Time (r | 0.76<br>esults S | 1.10E-03                 | 0.27<br>Considered average<br>Design rate | 1.4E-05<br>4.8E-05<br>2.4E-05 | 49.1<br>173.9 |
| 0.00<br>e: Test<br>0.0<br>0.5<br>0.5<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.24                          | 0.76                          | 900        | 1200<br>S   | 0.90<br>oakage R<br>Time (r | 0.76<br>esults S | 1.10E-03                 | 0.27<br>Considered average<br>Design rate | 1.4E-05<br>4.8E-05<br>2.4E-05 | 49.1<br>173.9 |
| 00.00<br>e: Test<br>0.0<br>0.5<br>0.5<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.24                          | 0.76                          | 900        | 1200<br>S   | 0.90<br>oakage R<br>Time (r | 0.76<br>esults S | 1.10E-03                 | 0.27<br>Considered average<br>Design rate | 1.4E-05<br>4.8E-05<br>2.4E-05 | 49.1<br>173.9 |
| e: Test<br>0.00<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.24                          | 0.76                          | 900        | 1200<br>S   | 0.90<br>oakage R<br>Time (r | 0.76<br>esults S | 1.10E-03                 | 0.27<br>Considered average<br>Design rate | 1.4E-05<br>4.8E-05<br>2.4E-05 | 49.1<br>173.9 |
| 0.00<br>e: Test<br>0.0<br>0.5<br>0.5<br>0.5<br>1.0<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.24                          | 0.76                          | 900        | 1200<br>S   | 0.90<br>oakage R<br>Time (r | 0.76<br>esults S | 1.10E-03                 | 0.27<br>Considered average<br>Design rate | 1.4E-05<br>4.8E-05<br>2.4E-05 | 49.1<br>173.9 |
| e: Test<br>0.00<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.24                          | 0.76                          | 900        | 1200<br>S   | 0.90<br>oakage R<br>Time (r | 0.76<br>esults S | 1.10E-03                 | 0.27<br>Considered average<br>Design rate | 1.4E-05<br>4.8E-05<br>2.4E-05 | 49.1<br>173.9 |
| e: Test<br>0.00<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.24                          | 0.76                          | 900        | 1200<br>S   | 0.90<br>oakage R<br>Time (r | 0.76<br>esults S | 1.10E-03                 | 0.27<br>Considered average<br>Design rate | 1.4E-05<br>4.8E-05<br>2.4E-05 | 49.1<br>173.9 |
| 0.00<br>e: Test<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0<br>0.0<br>0.0<br>0.0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 3.24                          | 0.76                          | 900        | 1200<br>S   | 0.90<br>oakage R<br>Time (r | 0.76<br>esults S | 1.10E-03                 | 0.27<br>Considered average<br>Design rate | 1.4E-05<br>4.8E-05<br>2.4E-05 | 49.1<br>173.9 |
| 0.00<br>e: Test<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0<br>0.0<br>0<br>0<br>0.0<br>0<br>0<br>0.0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.24                          | 0.76                          | 900        | 1200<br>S   | 0.90<br>oakage R<br>Time (r | 0.76<br>esults S | 1.10E-03                 | 0.27<br>Considered average<br>Design rate | 1.4E-05<br>4.8E-05<br>2.4E-05 | 49.1<br>173.9 |
| 0.00<br>e: Test<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0<br>0.0<br>0<br>0<br>0.0<br>0<br>0<br>0.0<br>0<br>0<br>0.0<br>0<br>0<br>0.0<br>0<br>0<br>0.0<br>0<br>0<br>0<br>0.0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.24                          | 0.76                          | 900        | 1200<br>S   | 0.90<br>oakage R<br>Time (r | 0.76<br>esults S | 1.10E-03                 | 0.27<br>Considered average<br>Design rate | 1.4E-05<br>4.8E-05<br>2.4E-05 | 49.1<br>173.9 |
| 0.00<br>e: Test<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0<br>0.0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.24                          | 0.76                          | 900        | 1200<br>S   | 0.90<br>oakage R<br>Time (r | 0.76<br>esults S | 1.10E-03                 | 0.27<br>Considered average<br>Design rate | 1.4E-05<br>4.8E-05<br>2.4E-05 | 49.1<br>173.9 |

|                                                                                                                             |                                       |                                   |            | FAL              | LING H                              | EAD S            | OAKAGE TEST          |                                                   |                               |                               |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------|------------|------------------|-------------------------------------|------------------|----------------------|---------------------------------------------------|-------------------------------|-------------------------------|
| CLIENT:                                                                                                                     |                                       | Calcutta Farm                     |            |                  |                                     |                  | LOCATION:            | Matamata                                          |                               |                               |
| PROJECT:                                                                                                                    |                                       | Tauranga Roa                      | d Industr  | ial Subdivi      | ision                               |                  | JOB NUMBER:          | TGA2020-0304                                      |                               |                               |
| TEST LOCA                                                                                                                   | ATION:                                | S02                               |            |                  |                                     |                  | TEST DATE:           | 15/07/2021 - 16/07/2021                           |                               |                               |
| Test Hole I                                                                                                                 | Diameter                              |                                   |            | 0.10             | m                                   |                  | Base Area 'B'        | 0.008                                             | m2                            |                               |
| Test Hole                                                                                                                   |                                       |                                   |            | 2.00             |                                     |                  | Circumference 'C'    | 0.314                                             |                               |                               |
| Groundwat                                                                                                                   |                                       |                                   | Not Er     | ncountered       | m                                   |                  |                      |                                                   |                               |                               |
|                                                                                                                             |                                       |                                   |            |                  |                                     |                  |                      |                                                   |                               |                               |
| Time                                                                                                                        | Water Level BGL                       |                                   |            | steps            |                                     | steps            | Volume soaked        | Soakage surface area                              |                               | ge Rate                       |
| T<br>min                                                                                                                    | d                                     | =D-d                              | t0         | t1               | h0                                  | h1               | V=(h0-h1)*B          | A=(C*(h0+h1)/2)+B                                 | SR=V/A/(t1-t0)<br>m3/m2/sec   | SR*60*60*100                  |
| 0                                                                                                                           | m<br>0                                | <b>m</b><br>1.91                  | sec        | sec              | m<br>-                              | т<br>-           | m3                   | m2                                                | m3/m2/sec                     | litres/m2/hou                 |
| 0.17                                                                                                                        | 0.09                                  | 1.86                              | 0          | 10               | 1.91                                | 1.86             | 3.93E-04             | 0.60                                              | 6.5E-05                       | 235.6                         |
| 0.33                                                                                                                        | 0.14                                  | 1.81                              | 10         | 20               | 1.86                                | 1.81             | 3.93E-04             | 0.58                                              | 6.7E-05                       | 241.9                         |
| 0.50                                                                                                                        | 0.19                                  | 1.77                              | 20         | 30               | 1.81                                | 1.77             | 3.14E-04             | 0.57                                              | 5.5E-05                       | 198.3                         |
| 0.67                                                                                                                        | 0.23                                  | 1.71                              | 30         | 40               | 1.77                                | 1.71             | 4.71E-04             | 0.55                                              | 8.5E-05                       | 305.9                         |
| 0.83                                                                                                                        | 0.29                                  | 1.68                              | 40         | 50               | 1.71                                | 1.68             | 2.36E-04             | 0.54                                              | 4.4E-05                       | 157.0                         |
| 1.00                                                                                                                        | 0.32                                  | 1.56                              | 50         | 60               | 1.68                                | 1.56             | 9.42E-04             | 0.52                                              | 1.8E-04                       | 656.5                         |
| 1.50                                                                                                                        | 0.44<br>0.54                          | 1.46                              | 60<br>90   | 90               | 1.56                                | 1.46             | 7.85E-04             | 0.48                                              | 5.4E-05                       | 195.4                         |
| 2.00<br>2.50                                                                                                                | 0.64                                  | 1.36<br>1.29                      | 90<br>120  | 120<br>150       | 1.46<br>1.36                        | 1.36<br>1.29     | 7.85E-04<br>5.50E-04 | 0.45<br>0.42                                      | 5.8E-05<br>4.3E-05            | 209.1<br>155.6                |
| 3.00                                                                                                                        | 0.71                                  | 1.23                              | 150        | 180              | 1.30                                | 1.23             | 4.71E-04             | 0.42                                              | 4.3E-05<br>3.9E-05            | 140.1                         |
| 3.50                                                                                                                        | 0.77                                  | 1.17                              | 180        | 210              | 1.23                                | 1.17             | 4.71E-04             | 0.38                                              | 4.1E-05                       | 146.9                         |
| 4.00                                                                                                                        | 0.83                                  | 1.12                              | 210        | 240              | 1.17                                | 1.12             | 3.93E-04             | 0.37                                              | 3.6E-05                       | 128.2                         |
| 4.50                                                                                                                        | 0.88                                  | 1.07                              | 240        | 270              | 1.12                                | 1.07             | 3.93E-04             | 0.35                                              | 3.7E-05                       | 133.9                         |
| 5.00                                                                                                                        | 0.93                                  | 1.00                              | 270        | 300              | 1.07                                | 1.00             | 5.50E-04             | 0.33                                              | 5.5E-05                       | 198.1                         |
| 6.00                                                                                                                        | 1.00                                  | 0.93                              | 300        | 360              | 1.00                                | 0.93             | 5.50E-04             | 0.31                                              | 2.9E-05                       | 106.1                         |
| 7.00                                                                                                                        | 1.07                                  | 0.87                              | 360        | 420              | 0.93                                | 0.87             | 4.71E-04             | 0.29                                              | 2.7E-05                       | 97.3                          |
| 8.00<br>9.00                                                                                                                | 1.13<br>1.13                          | 0.87                              | 420<br>480 | 480<br>540       | 0.87<br>0.87                        | 0.87<br>0.82     | 0.00E+00             | 0.28<br>0.27                                      | 0.0E+00                       | 0.0<br>86.2                   |
| 9.00                                                                                                                        |                                       | 0.82                              | 460<br>540 | 540<br>600       | 0.87                                | 0.82             | 3.93E-04<br>3.93E-04 | 0.26                                              | 2.4E-05<br>2.5E-05            | 91.5                          |
| 10.00                                                                                                                       | 1 18                                  |                                   |            |                  |                                     | 0.11             | 0.002-04             |                                                   | 2.02-00                       |                               |
| 10.00<br>15.00                                                                                                              | 1.18<br>1.23                          | 0.77<br>0.59                      |            |                  |                                     | 0.59             | 1 41E-03             | 0.22                                              | 2 1E-05                       | 76.6                          |
| 10.00<br>15.00<br>20.00                                                                                                     | 1.18<br>1.23<br>1.41                  | 0.77<br>0.59<br>0.47              | 600<br>900 | 900<br>1200      | 0.77                                | 0.59<br>0.47     | 1.41E-03<br>9.42E-04 | 0.22<br>0.17<br>Considered average<br>Design rate |                               | 76.6<br>64.9<br>172.6<br>86.3 |
| 15.00<br>20.00                                                                                                              | 1.23                                  | 0.59<br>0.47                      | 600<br>900 | 900              | 0.77                                |                  |                      | 0.17                                              | 1.8E-05<br>4.8E-05            | 64.9                          |
| 15.00<br>20.00                                                                                                              | 1.23<br>1.41                          | 0.59<br>0.47                      | 600<br>900 | 900<br>1200      | 0.77                                | 0.47             | 9.42E-04             | 0.17<br>Considered average                        | 1.8E-05<br>4.8E-05            | 64.9<br>172.6                 |
| 15.00<br>20.00                                                                                                              | 1.23<br>1.41                          | 0.59<br>0.47                      | 600<br>900 | 900<br>1200      | 0.77<br>0.59<br>oakage R            | 0.47             | 9.42E-04             | 0.17<br>Considered average                        | 1.8E-05<br>4.8E-05            | 64.9<br>172.6                 |
| 15.00<br>20.00                                                                                                              | 1.23<br>1.41<br>s struck out were not | 0.59<br>0.47                      | 600<br>900 | 900<br>1200<br>S | 0.77<br>0.59<br>oakage R            | 0.47<br>esults S | 9.42E-04             | 0.17<br>Considered average                        | 1.8E-05<br>4.8E-05            | 64.9<br>172.6                 |
| 15.00<br>20.00                                                                                                              | 1.23<br>1.41                          | 0.59<br>0.47<br>included in the a | 600<br>900 | 900<br>1200<br>S | 0.77<br>0.59<br>oakage R<br>Time (r | 0.47<br>esults S | 9.42E-04             | 0.17<br>Considered average<br>Design rate         | 1.8E-05<br>4.8E-05<br>2.4E-05 | 64.9<br>172.6                 |
| 15.00<br>20.00                                                                                                              | 1.23<br>1.41                          | 0.59<br>0.47<br>included in the a | 600<br>900 | 900<br>1200<br>S | 0.77<br>0.59<br>oakage R<br>Time (r | 0.47<br>esults S | 9.42E-04             | 0.17<br>Considered average<br>Design rate         | 1.8E-05<br>4.8E-05<br>2.4E-05 | 64.9<br>172.6                 |
| 15.00<br>20.00                                                                                                              | 1.23<br>1.41                          | 0.59<br>0.47<br>included in the a | 600<br>900 | 900<br>1200<br>S | 0.77<br>0.59<br>oakage R<br>Time (r | 0.47<br>esults S | 9.42E-04             | 0.17<br>Considered average<br>Design rate         | 1.8E-05<br>4.8E-05<br>2.4E-05 | 64.9<br>172.6                 |
| 15.00<br>20.00                                                                                                              | 1.23<br>1.41                          | 0.59<br>0.47<br>included in the a | 600<br>900 | 900<br>1200<br>S | 0.77<br>0.59<br>oakage R<br>Time (r | 0.47<br>esults S | 9.42E-04             | 0.17<br>Considered average<br>Design rate         | 1.8E-05<br>4.8E-05<br>2.4E-05 | 64.9<br>172.6                 |
| 15.00<br>20.00                                                                                                              | 1.23<br>1.41                          | 0.59<br>0.47<br>included in the a | 600<br>900 | 900<br>1200<br>S | 0.77<br>0.59<br>oakage R<br>Time (r | 0.47<br>esults S | 9.42E-04             | 0.17<br>Considered average<br>Design rate         | 1.8E-05<br>4.8E-05<br>2.4E-05 | 64.9<br>172.6                 |
| 15.00<br>20.00                                                                                                              | 1.23<br>1.41                          | 0.59<br>0.47<br>included in the a | 600<br>900 | 900<br>1200<br>S | 0.77<br>0.59<br>oakage R<br>Time (r | 0.47<br>esults S | 9.42E-04             | 0.17<br>Considered average<br>Design rate         | 1.8E-05<br>4.8E-05<br>2.4E-05 | 64.9<br>172.6                 |
| 15.00<br>20.00<br>Note: Test                                                                                                | 1.23<br>1.41                          | 0.59<br>0.47<br>included in the a | 600<br>900 | 900<br>1200<br>S | 0.77<br>0.59<br>oakage R<br>Time (r | 0.47<br>esults S | 9.42E-04             | 0.17<br>Considered average<br>Design rate         | 1.8E-05<br>4.8E-05<br>2.4E-05 | 64.9<br>172.6                 |
| 15.00<br>20.00<br>Note: Test                                                                                                | 1.23<br>1.41                          | 0.59<br>0.47<br>included in the a | 600<br>900 | 900<br>1200<br>S | 0.77<br>0.59<br>oakage R<br>Time (r | 0.47<br>esults S | 9.42E-04             | 0.17<br>Considered average<br>Design rate         | 1.8E-05<br>4.8E-05<br>2.4E-05 | 64.9<br>172.6                 |
| 15.00<br>20.00<br>Note: Test                                                                                                | 1.23<br>1.41                          | 0.59<br>0.47<br>included in the a | 600<br>900 | 900<br>1200<br>S | 0.77<br>0.59<br>oakage R<br>Time (r | 0.47<br>esults S | 9.42E-04             | 0.17<br>Considered average<br>Design rate         | 1.8E-05<br>4.8E-05<br>2.4E-05 | 64.9<br>172.6                 |
| 15.00<br>20.00<br>Note: Test                                                                                                | 1.23<br>1.41                          | 0.59<br>0.47<br>included in the a | 600<br>900 | 900<br>1200<br>S | 0.77<br>0.59<br>oakage R<br>Time (r | 0.47<br>esults S | 9.42E-04             | 0.17<br>Considered average<br>Design rate         | 1.8E-05<br>4.8E-05<br>2.4E-05 | 64.9<br>172.6                 |
| 15.00<br>20.00<br>Note: Test                                                                                                | 1.23<br>1.41                          | 0.59<br>0.47<br>included in the a | 600<br>900 | 900<br>1200<br>S | 0.77<br>0.59<br>oakage R<br>Time (r | 0.47<br>esults S | 9.42E-04             | 0.17<br>Considered average<br>Design rate         | 1.8E-05<br>4.8E-05<br>2.4E-05 | 64.9<br>172.6                 |
| 15.00<br>20.00<br>Note: Test                                                                                                | 1.23<br>1.41                          | 0.59<br>0.47<br>included in the a | 600<br>900 | 900<br>1200<br>S | 0.77<br>0.59<br>oakage R<br>Time (r | 0.47<br>esults S | 9.42E-04             | 0.17<br>Considered average<br>Design rate         | 1.8E-05<br>4.8E-05<br>2.4E-05 | 64.9<br>172.6                 |
| 15.00<br>20.00<br>Note: Test                                                                                                | 1.23<br>1.41                          | 0.59<br>0.47<br>included in the a | 600<br>900 | 900<br>1200<br>S | 0.77<br>0.59<br>oakage R<br>Time (r | 0.47<br>esults S | 9.42E-04             | 0.17<br>Considered average<br>Design rate         | 1.8E-05<br>4.8E-05<br>2.4E-05 | 64.9<br>172.6                 |
| 15.00<br>20.00<br>Note: Test                                                                                                | 1.23<br>1.41                          | 0.59<br>0.47<br>included in the a | 600<br>900 | 900<br>1200<br>S | 0.77<br>0.59<br>oakage R<br>Time (r | 0.47<br>esults S | 9.42E-04             | 0.17<br>Considered average<br>Design rate         | 1.8E-05<br>4.8E-05<br>2.4E-05 | 64.9<br>172.6                 |
| 15.00<br>20.00<br>Note: Test                                                                                                | 1.23<br>1.41                          | 0.59<br>0.47<br>included in the a | 600<br>900 | 900<br>1200<br>S | 0.77<br>0.59<br>oakage R<br>Time (r | 0.47<br>esults S | 9.42E-04             | 0.17<br>Considered average<br>Design rate         | 1.8E-05<br>4.8E-05<br>2.4E-05 | 64.9<br>172.6                 |
| 15.00<br>20.00<br>Note: Test                                                                                                | 1.23<br>1.41                          | 0.59<br>0.47<br>included in the a | 600<br>900 | 900<br>1200<br>S | 0.77<br>0.59<br>oakage R<br>Time (r | 0.47<br>esults S | 9.42E-04             | 0.17<br>Considered average<br>Design rate         | 1.8E-05<br>4.8E-05<br>2.4E-05 | 64.9<br>172.6                 |
| 15.00<br>20.00<br>Note: Test<br>(see 0.<br>1.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0.<br>0. | 1.23<br>1.41                          | 0.59<br>0.47<br>included in the a | 600<br>900 | 900<br>1200<br>S | 0.77<br>0.59<br>oakage R<br>Time (r | 0.47<br>esults S | 9.42E-04             | 0.17<br>Considered average<br>Design rate         | 1.8E-05<br>4.8E-05<br>2.4E-05 | 64.9<br>172.6                 |
| 15.00<br>20.00<br>Note: Test                                                                                                | 1.23<br>1.41                          | 0.59<br>0.47<br>included in the a | 600<br>900 | 900<br>1200<br>S | 0.77<br>0.59<br>oakage R<br>Time (r | 0.47<br>esults S | 9.42E-04             | 0.17<br>Considered average<br>Design rate         | 1.8E-05<br>4.8E-05<br>2.4E-05 | 64.9<br>172.6                 |

| ENT:                              |                                                                                             | Calcutta Farm<br>Tauranga Roa |            |                    |                     |                      | OAKAGE TEST<br>LOCATION:<br>JOB NUMBER: | Matamata<br>TGA2020-0304                  |                         |                       |
|-----------------------------------|---------------------------------------------------------------------------------------------|-------------------------------|------------|--------------------|---------------------|----------------------|-----------------------------------------|-------------------------------------------|-------------------------|-----------------------|
| TLOC                              | CATION:                                                                                     | S03                           |            |                    |                     |                      | TEST DATE:                              | 15/07/2021 - 16/07/2021                   |                         |                       |
|                                   | Diameter                                                                                    |                               |            | 0.10               |                     |                      | Base Area 'B'                           | 0.008                                     |                         |                       |
|                                   | Depth 'D'                                                                                   |                               |            | 2.50               |                     |                      | Circumference 'C'                       | 0.314                                     | m2                      |                       |
| undwa                             | ater Level                                                                                  |                               | Not Er     | ncountered         | m                   |                      |                                         |                                           |                         |                       |
| ïme<br>T                          | Water Level BGL<br>d                                                                        | Water depth<br>=D-d           | Time<br>t0 | steps<br><i>t1</i> | Depth<br>h0         | steps<br>h1          | Volume soaked<br><i>V=(h0-h1)*B</i>     | Soakage surface area<br>A=(C*(h0+h1)/2)+B | Soaka<br>SR=V/A/(t1-t0) | ge Rate<br>SR*60*60*1 |
| nin                               | m                                                                                           | m                             | sec        | sec                | m                   | m                    |                                         | m2                                        | m3/m2/sec               | litres/m2/h           |
| 0                                 | 0                                                                                           | 2.45                          | -          | -                  | -                   | -                    | -                                       | -                                         | -                       | -                     |
| ).17                              | 0.05                                                                                        | 2.40                          | 0          | 10                 | 2.45                | 2.40                 | 3.93E-04                                | 0.77                                      | 5.1E-05                 | 183.7                 |
| ).33                              | 0.10                                                                                        | 2.35                          | 10         | 20                 | 2.40                | 2.35                 | 3.93E-04                                | 0.75                                      | 5.2E-05                 | 187.5                 |
| 0.50                              | 0.15                                                                                        | 2.30                          | 20         | 30                 | 2.35                | 2.30                 | 3.93E-04                                | 0.74                                      | 5.3E-05                 | 191.5                 |
| 0.67                              | 0.20                                                                                        | 2.25                          | 30         | 40                 | 2.30                | 2.25                 | 3.93E-04                                | 0.72                                      | 5.4E-05                 | 195.7                 |
| ).83                              | 0.25                                                                                        | 2.23                          | 40         | 50                 | 2.25                | 2.23                 | 1.57E-04                                | 0.71                                      | 2.2E-05                 | 79.5                  |
| 1.00                              | 0.27                                                                                        | 2.20                          | 50         | 60                 | 2.23                | 2.20                 | 2.36E-04                                | 0.70                                      | 3.3E-05                 | 120.5                 |
| 1.50                              | 0.30                                                                                        | 2.15                          | 60         | 90                 | 2.20                | 2.15                 | 3.93E-04                                | 0.69                                      | 1.9E-05                 | 68.2                  |
| 2.00                              | 0.35                                                                                        | 2.10                          | 90         | 120                | 2.15                | 2.10                 | 3.93E-04                                | 0.68                                      | 1.9E-05                 | 69.8                  |
| 2.50                              | 0.40                                                                                        | 2.05                          | 120        | 150                | 2.10                | 2.05                 | 3.93E-04                                | 0.66                                      | 2.0E-05                 | 71.4                  |
| 3.00                              | 0.45                                                                                        | 2.00                          | 150        | 180                | 2.05                | 2.00                 | 3.93E-04                                | 0.64                                      | 2.0E-05                 | 73.2                  |
| 3.50                              | 0.50                                                                                        | 1.95                          | 180        | 210                | 2.00                | 1.95                 | 3.93E-04                                | 0.63                                      | 2.1E-05                 | 75.0                  |
| 1.00                              | 0.55                                                                                        | 1.90                          | 210        | 240                | 1.95                | 1.90                 | 3.93E-04                                | 0.61                                      | 2.1E-05                 | 76.9                  |
| 1.50                              | 0.60                                                                                        | 1.86                          | 240        | 270                | 1.90                | 1.86                 | 3.14E-04                                | 0.60                                      | 1.7E-05                 | 63.0                  |
| 5.00                              | 0.64                                                                                        | 1.80                          | 270        | 300                | 1.86                | 1.80                 | 4.71E-04                                | 0.58                                      | 2.7E-05                 | 97.0                  |
| 6.00                              | 0.70                                                                                        | 1.75                          | 300        | 360                | 1.80                | 1.75                 | 3.93E-04                                | 0.57                                      | 1.2E-05                 | 41.7                  |
| 7.00                              | 0.75                                                                                        | 1.71                          | 360        | 420                | 1.75                | 1.71                 | 3.14E-04                                | 0.55                                      | 9.5E-06                 | 34.2                  |
| 3.00                              | 0.79                                                                                        | 1.66                          | 420        | 480                | 1.71                | 1.66                 | 3.93E-04                                | 0.54                                      | 1.2E-05                 | 43.9                  |
| 00.0                              | 0.84                                                                                        | 1.62                          | 480        | 540                | 1.66                | 1.62                 | 3.14E-04                                | 0.52                                      | 1.0E-05                 | 36.0                  |
| 0.00                              | 0.88                                                                                        | 1.47                          | 540        | 600                | 1.62                | 1.47                 | 1.18E-03                                | 0.49                                      | 4.0E-05                 | 143.3                 |
| 5.00                              | 1.03                                                                                        | 1.36                          | 600        | 900                | 1.47                | 1.36                 | 8.64E-04                                | 0.45                                      | 6.4E-06                 | 22.9                  |
| 0.00                              | 1.14                                                                                        | 1.12                          | 900        | 1200               | 1.36                | 1.12                 | 1.88E-03                                | 0.40                                      | 1.6E-05                 | 56.9                  |
|                                   |                                                                                             |                               |            |                    |                     |                      |                                         | Considered average                        | 2.6E-05                 | 92.0                  |
|                                   |                                                                                             |                               |            |                    |                     |                      |                                         | Considered average<br>Design rate         |                         | 92.0<br>46.0          |
| e: Tes                            | ts struck out were not                                                                      | included in the a             | average    | S                  | oakage R            | esults S             | 03                                      |                                           |                         |                       |
| e: Tes                            | ts struck out were not                                                                      | included in the a             | average    | S                  | oakage R<br>Time (r | esults S<br>ninutes) | 03                                      |                                           |                         |                       |
| e: Tes                            |                                                                                             |                               | average    |                    | Time (n             |                      |                                         | Design rate                               | 1.3E-05                 |                       |
| e: Tes                            | ts struck out were not                                                                      | included in the a             | average    |                    |                     |                      | 03                                      |                                           |                         |                       |
|                                   | 0                                                                                           |                               | average    |                    | Time (n             |                      |                                         | Design rate                               | 1.3E-05                 |                       |
|                                   | 0                                                                                           |                               | average    |                    | Time (n             |                      |                                         | Design rate                               | 1.3E-05                 |                       |
|                                   | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                     |                               | average    |                    | Time (n             |                      |                                         | Design rate                               | 1.3E-05                 |                       |
| Level (metres)                    | 0                                                                                           |                               | average    |                    | Time (n             |                      |                                         | Design rate                               | 1.3E-05                 |                       |
| Level (metres)                    | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                     |                               | average    |                    | Time (n             |                      |                                         | Design rate                               | 1.3E-05                 |                       |
| Level (metres)                    |                                                                                             |                               | average    |                    | Time (n             |                      |                                         | Design rate                               | 1.3E-05                 |                       |
| Level (metres)                    |                                                                                             |                               | average    |                    | Time (n             |                      |                                         | Design rate                               | 1.3E-05                 |                       |
| Below Ground Level (metres)       |                                                                                             |                               | average    |                    | Time (n             |                      |                                         | Design rate                               | 1.3E-05                 |                       |
| Level (metres)                    |                                                                                             |                               | average    |                    | Time (n             |                      |                                         | Design rate                               | 1.3E-05                 |                       |
| Depth Below Ground Level (metres) | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                               | average    |                    | Time (n             |                      |                                         | Design rate                               | 1.3E-05                 |                       |
| Depth Below Ground Level (metres) | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                               | average    |                    | Time (n             |                      |                                         | Design rate                               | 1.3E-05                 |                       |

| CLIENT:           |                                                  |                     |           | FAL         | LING H       | EAD S                 | OAKAGE TEST          |                         |                    |                |
|-------------------|--------------------------------------------------|---------------------|-----------|-------------|--------------|-----------------------|----------------------|-------------------------|--------------------|----------------|
|                   |                                                  | Calcutta Farm       |           |             |              |                       | LOCATION:            | Matamata                |                    |                |
| PROJEC            |                                                  | Tauranga Roa        | d Industr | ial Subdivi | ision        |                       | JOB NUMBER:          | TGA2020-0304            |                    |                |
| TEST LC           | DCATION:                                         | S04                 |           |             |              |                       | TEST DATE:           | 15/07/2021 - 16/07/2021 |                    |                |
| Test Ho           | le Diameter                                      |                     |           | 0.10        | m            |                       | Base Area 'B'        | 0.008                   | m2                 |                |
|                   | le Depth 'D'                                     |                     |           | 2.00        |              |                       | Circumference 'C'    | 0.314                   |                    |                |
|                   | water Level                                      |                     | Not Er    | ncountered  |              |                       |                      | 0.011                   |                    |                |
|                   |                                                  |                     |           |             |              |                       |                      |                         |                    |                |
| Time              | Water Level BGL                                  |                     |           | steps       | Depth        | steps                 | Volume soaked        | Soakage surface area    |                    | ge Rate        |
| т                 | d                                                | =D-d                | t0        | t1          | h0           | h1                    | V=(h0-h1)*B          | A=(C*(h0+h1)/2)+B       |                    | SR*60*60*1000  |
| min               | m                                                | m                   | sec       | sec         | m            | m                     | m3                   | m2                      | m3/m2/sec          | litres/m2/hour |
| 0                 | 0                                                | 1.95                | -         | -           | -            | -                     | -                    | -                       | -                  | -              |
| 0.17              | 0.05                                             | 1.90                | 0         | 10          | 1.95         | 1.90                  | 3.93E-04             | 0.61                    | 6.4E-05            | 230.8          |
| 0.33              | 0.10                                             | 1.85                | 10        | 20          | 1.90         | 1.85                  | 3.93E-04             | 0.60                    | 6.6E-05            | 236.8          |
| 0.50              | 0.15                                             | 1.80                | 20        | 30          | 1.85         | 1.80                  | 3.93E-04             | 0.58                    | 6.8E-05            | 243.2          |
| 0.67              | 0.20                                             | 1.75                | 30        | 40          | 1.80         | 1.75                  | 3.93E-04             | 0.57                    | 6.9E-05            | 250.0          |
| 0.83              | 0.25                                             | 1.72                | 40        | 50          | 1.75         | 1.72                  | 2.36E-04             | 0.55                    | 4.3E-05            | 153.4          |
| 1.00              | 0.28                                             | 1.61                | 50<br>60  | 60<br>90    | 1.72         | 1.61                  | 8.64E-04             | 0.53                    | 1.6E-04            | 585.8          |
| 1.50              | 0.39                                             | 1.52<br>1.44        | 90        |             | 1.61         | 1.52<br>1.44          | 7.07E-04             | 0.50<br>0.47            | 4.7E-05            | 169.8          |
| 2.00<br>2.50      | 0.48<br>0.56                                     | 1.44                | 90<br>120 | 120<br>150  | 1.52<br>1.44 | 1.44                  | 6.28E-04             | 0.45                    | 4.4E-05<br>4.1E-05 | 159.5<br>146.9 |
| 2.50              | 0.63                                             | 1.37                | 120       | 180         | 1.44         | 1.37                  | 5.50E-04<br>5.50E-04 | 0.43                    | 4.1E-05<br>4.3E-05 | 154.4          |
|                   | 0.83                                             | 1.30                | 180       | 210         | 1.37         | 1.30                  |                      | 0.43                    | 4.3E-05<br>3.2E-05 | 154.4          |
| 3.50<br>4.00      | 0.75                                             | 1.20                | 210       | 240         | 1.30         | 1.25                  | 3.93E-04<br>3.93E-04 | 0.41                    | 3.3E-05            | 120.0          |
| 4.00              | 0.80                                             | 1.16                | 240       | 240         | 1.20         | 1.20                  | 3.14E-04             | 0.39                    | 2.8E-05            | 99.6           |
| 5.00              | 0.84                                             | 1.08                | 240       | 300         | 1.20         | 1.08                  | 6.28E-04             | 0.36                    | 5.8E-05            | 209.6          |
| 6.00              | 0.92                                             | 1.00                | 300       | 360         | 1.08         | 1.00                  | 6.28E-04             | 0.33                    | 3.1E-05            | 112.7          |
| 7.00              | 1.00                                             | 0.94                | 360       | 420         | 1.00         | 0.94                  | 4.71E-04             | 0.33                    | 2.5E-05            | 90.5           |
| 8.00              | 1.06                                             | 0.89                | 420       | 480         | 0.94         | 0.89                  | 3.93E-04             | 0.30                    | 2.2E-05            | 79.8           |
| 9.00              | 1.11                                             | 0.84                | 480       | 540         | 0.89         | 0.84                  | 3.93E-04             | 0.28                    | 2.3E-05            | 84.3           |
| 10.00             |                                                  | 0.66                | 540       | 600         | 0.84         | 0.66                  | 1.41E-03             | 0.24                    | 9.7E-05            | 348.4          |
| 15.00             |                                                  | 0.55                | 600       | 900         | 0.66         | 0.55                  | 8.64E-04             | 0.20                    | 1.5E-05            | 52.4           |
| 20.00             |                                                  | 0.41                | 900       | 1200        | 0.55         | 0.41                  | 1.10E-03             | 0.16                    | 2.3E-05            | 83.2           |
| Note: Te          | ests struck out were not                         | t included in the a | average   |             |              |                       |                      | Design rate             | 2.5E-05            | 88.7           |
|                   |                                                  |                     |           |             |              |                       |                      |                         |                    |                |
|                   |                                                  |                     |           | S           | oakage R     | esults S              | 504                  |                         |                    |                |
|                   |                                                  |                     |           | S           |              |                       | 504                  |                         |                    |                |
|                   | 0                                                | 5                   |           |             | Time (r      | lesults S<br>ninutes) |                      | 20                      | 25                 |                |
|                   | 0                                                | 5                   |           |             |              |                       | 15                   | 20                      | 25                 |                |
|                   |                                                  | 5                   |           |             | Time (r      |                       |                      | 20                      | 25                 |                |
| (5                | 0                                                | 5                   |           |             | Time (r      |                       |                      | 20                      | 25                 |                |
| tres)             |                                                  | 5                   |           |             | Time (r      |                       |                      | 20                      | 25                 |                |
| metres)           | 0.2                                              | 5                   |           |             | Time (r      |                       |                      | 20                      | 25                 |                |
| el (metres)       | 0                                                | 5                   |           |             | Time (r      |                       |                      | 20                      | 25                 |                |
| evel (metres)     | 0.2                                              | 5                   |           |             | Time (r      |                       |                      | 20                      | 25                 |                |
| d Level (metres)  | 0.2                                              | 5                   |           |             | Time (r      |                       |                      | 20                      | 25                 |                |
|                   | 0 0.2 0.4                                        | 5                   |           |             | Time (r      |                       |                      | 20                      | 25                 |                |
|                   | 0 0 0.2 0.4 0.6 0 0.6                            | 5                   |           |             | Time (r      |                       |                      | 20                      | 25                 |                |
|                   | 0 0.2 0.4                                        | 5                   |           |             | Time (r      |                       |                      | 20                      | 25                 |                |
|                   | 0<br>0.2<br>0.4<br>0.6<br>0.8                    | 5                   |           |             | Time (r      |                       |                      | 20                      | 25                 |                |
|                   | 0 0 0.2 0.4 0.6 0 0.6                            | 5                   |           |             | Time (r      |                       |                      | 20                      | 25                 |                |
|                   | 0<br>0.2<br>0.4<br>0.6<br>0.8                    | 5                   |           |             | Time (r      |                       |                      |                         | 25                 |                |
| epth Below Ground | 0<br>0.2<br>0.4<br>0.6<br>0.8                    | 5                   |           |             | Time (r      |                       |                      |                         | 25                 |                |
|                   | 0<br>0.2<br>0.4<br>0.6<br>0.8<br>1               | 5                   |           |             | Time (r      |                       |                      | 20                      | 25                 |                |
|                   | 0<br>0.2<br>0.4<br>0.6<br>0.8<br>1               | 5                   |           |             | Time (r      |                       |                      |                         | 25                 |                |
|                   | 0<br>0.2<br>0.4<br>0.6<br>0.8<br>1<br>1.2        | 5                   |           |             | Time (r      |                       |                      |                         | 25                 |                |
|                   | 0<br>0.2<br>0.4<br>0.6<br>0.8<br>1<br>1.2<br>1.4 | 5                   |           |             | Time (r      |                       |                      | 20                      |                    |                |
|                   | 0<br>0.2<br>0.4<br>0.6<br>0.8<br>1<br>1.2        | 5                   |           |             | Time (r      |                       |                      |                         |                    |                |
|                   | 0<br>0.2<br>0.4<br>0.6<br>0.8<br>1<br>1.2<br>1.4 | 5                   |           |             | Time (r      |                       |                      |                         |                    |                |

|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |           | FAL         | LING H                      | EAD S             | OAKAGE TEST       |                                           |                               |              |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|-------------|-----------------------------|-------------------|-------------------|-------------------------------------------|-------------------------------|--------------|
| ENT:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Calcutta Farm |           |             |                             |                   | LOCATION:         | Matamata                                  |                               |              |
| DJEC             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tauranga Roa  | d Industr | ial Subdivi | sion                        |                   | JOB NUMBER:       | TGA2020-0304                              |                               |              |
| T LC             | DCATION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S05           |           |             |                             |                   | TEST DATE:        | 15/07/2021 - 16/07/2021                   |                               |              |
| t Ho             | le Diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |           | 0.10        | m                           |                   | Base Area 'B'     | 0.008                                     | m2                            |              |
|                  | le Depth 'D'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |           | 2.50        |                             |                   | Circumference 'C' | 0.008                                     |                               |              |
|                  | water Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | Net To    |             |                             |                   |                   | 0.314                                     | mz                            |              |
| unav             | water Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | NOT ET    | ncountered  | m                           |                   |                   |                                           |                               |              |
| ime              | Water Level BGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Water depth   | Time      | steps       | Depth                       | steps             | Volume soaked     | Soakage surface area                      | Soaka                         | ge Rate      |
| Т                | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =D-d          | t0        | t1          | h0 .                        | h1                | V=(h0-h1)*B       | A=(C*(h0+h1)/2)+B                         | SR=V/A/(t1-t0)                |              |
| nin              | т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | т             | sec       | sec         | m                           | m                 | m3                | m2                                        | m3/m2/sec                     | litres/m2/h  |
| 0                | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.86          | -         | -           | -                           | -                 | -                 | -                                         | -                             | -            |
| ).17             | 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.78          | 0         | 10          | 1.86                        | 1.78              | 6.28E-04          | 0.58                                      | 1.1E-04                       | 390.2        |
| ).33             | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.77          | 10        | 20          | 1.78                        | 1.77              | 7.85E-05          | 0.57                                      | 1.4E-05                       | 50.0         |
| ).50             | 0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.76          | 20        | 30          | 1.77                        | 1.76              | 7.85E-05          | 0.56                                      | 1.4E-05                       | 50.3         |
| ).67             | 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.76          | 30        | 40          | 1.76                        | 1.76              | 0.00E+00          | 0.56                                      | 0.0E+00                       | 0.0          |
| .83              | 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.75          | 40        | 50          | 1.76                        | 1.75              | 7.85E-05          | 0.56                                      | 1.4E-05                       | 50.6         |
| .00              | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.74          | 50        | 60          | 1.75                        | 1.74              | 7.85E-05          | 0.56                                      | 1.4E-05                       | 50.8         |
| .50              | 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.73          | 60        | 90          | 1.74                        | 1.73              | 7.85E-05          | 0.55                                      | 4.7E-06                       | 17.0         |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | 90        |             |                             |                   |                   |                                           |                               |              |
| .00              | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.71          |           | 120         | 1.73                        | 1.71              | 1.57E-04          | 0.55                                      | 9.6E-06                       | 34.4         |
| .50              | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.69          | 120       | 150         | 1.71                        | 1.69              | 1.57E-04          | 0.54                                      | 9.7E-06                       | 34.8         |
| .00              | 0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.68          | 150       | 180         | 1.69                        | 1.68              | 7.85E-05          | 0.54                                      | 4.9E-06                       | 17.5         |
| .50              | 0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.66          | 180       | 210         | 1.68                        | 1.66              | 1.57E-04          | 0.53                                      | 9.8E-06                       | 35.4         |
| .00              | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.63          | 210       | 240         | 1.66                        | 1.63              | 2.36E-04          | 0.52                                      | 1.5E-05                       | 53.9         |
| .50              | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.61          | 240       | 270         | 1.63                        | 1.61              | 1.57E-04          | 0.52                                      | 1.0E-05                       | 36.5         |
| .00              | 0.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.57          | 270       | 300         | 1.61                        | 1.57              | 3.14E-04          | 0.51                                      | 2.1E-05                       | 74.3         |
| .00              | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.55          | 300       | 360         | 1.57                        | 1.55              | 1.57E-04          | 0.50                                      | 5.3E-06                       | 18.9         |
| .00              | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.51          | 360       | 420         | 1.55                        | 1.51              | 3.14E-04          | 0.49                                      | 1.1E-05                       | 38.6         |
| .00              | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.47          | 420       | 480         | 1.51                        | 1.47              | 3.14E-04          | 0.43                                      | 1.1E-05                       | 39.6         |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |           |             |                             |                   |                   |                                           |                               |              |
| .00              | 1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.42          | 480       | 540         | 1.47                        | 1.42              | 3.93E-04          | 0.46                                      | 1.4E-05                       | 51.0         |
| 0.00             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.30          | 540       | 600         | 1.42                        | 1.30              | 9.42E-04          | 0.44                                      | 3.6E-05                       | 130.0        |
| 5.00             | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.30          | 600       | 900         | 1.30                        | 1.30              | 0.00E+00          | 0.42                                      | 0.0E+00                       | 0.0          |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00          | 000       | 500         |                             |                   |                   |                                           |                               |              |
| 0.00             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.21          | 900       | 1200        | 1.30                        | 1.21              | 7.07E-04          | 0.40                                      | 5.9E-06                       | 21.1         |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |           |             |                             |                   |                   | 0.40<br>Considered average<br>Design rate | 5.9E-06<br>1.6E-05            | 21.1<br>56.9 |
| ).00             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.21          | 900       |             |                             |                   |                   | Considered average                        | 5.9E-06<br>1.6E-05            | 21.1<br>56.9 |
| ).00             | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.21          | 900       | 1200        |                             | 1.21              | 7.07E-04          | Considered average                        | 5.9E-06<br>1.6E-05            | 21.1         |
| ).00             | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.21          | 900       | 1200        | 1.30<br>oakage R            | 1.21<br>Sesults S | 7.07E-04          | Considered average                        | 5.9E-06<br>1.6E-05            | 21.1<br>56.9 |
| ).00             | ests struck out were no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.21          | 900       | 1200<br>S   | 1.30<br>oakage R<br>Time (n | 1.21              | 7.07E-04          | Considered average<br>Design rate         | 5.9E-06<br>1.6E-05<br>7.9E-06 | 21.1<br>56.9 |
| 0.00             | ests struck out were no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.21          | 900       | 1200        | 1.30<br>oakage R<br>Time (n | 1.21<br>Sesults S | 7.07E-04          | Considered average                        | 5.9E-06<br>1.6E-05            | 21.1<br>56.9 |
| ).00             | ests struck out were no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.21          | 900       | 1200<br>S   | 1.30<br>oakage R<br>Time (n | 1.21<br>Sesults S | 7.07E-04          | Considered average<br>Design rate         | 5.9E-06<br>1.6E-05<br>7.9E-06 | 21.1<br>56.9 |
| ).00<br>:: Те    | ests struck out were no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.21          | 900       | 1200<br>S   | 1.30<br>oakage R<br>Time (n | 1.21<br>Sesults S | 7.07E-04          | Considered average<br>Design rate         | 5.9E-06<br>1.6E-05<br>7.9E-06 | 21.1<br>56.9 |
| ).00<br>э: Те    | ests struck out were no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.21          | 900       | 1200<br>S   | 1.30<br>oakage R<br>Time (n | 1.21<br>Sesults S | 7.07E-04          | Considered average<br>Design rate         | 5.9E-06<br>1.6E-05<br>7.9E-06 | 21.1<br>56.9 |
| ).00<br>э: Те    | ests struck out were no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.21          | 900       | 1200<br>S   | 1.30<br>oakage R<br>Time (n | 1.21<br>Sesults S | 7.07E-04          | Considered average<br>Design rate         | 5.9E-06<br>1.6E-05<br>7.9E-06 | 21.1<br>56.9 |
| ).00<br>э: Те    | ests struck out were no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.21          | 900       | 1200<br>S   | 1.30<br>oakage R<br>Time (n | 1.21<br>Sesults S | 7.07E-04          | Considered average<br>Design rate         | 5.9E-06<br>1.6E-05<br>7.9E-06 | 21.1<br>56.9 |
| Level (metres)   | ests struck out were no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.21          | 900       | 1200<br>S   | 1.30<br>oakage R<br>Time (n | 1.21<br>Sesults S | 7.07E-04          | Considered average<br>Design rate         | 5.9E-06<br>1.6E-05<br>7.9E-06 | 21.1<br>56.9 |
| d Level (metres) | ests struck out were no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.21          | 900       | 1200<br>S   | 1.30<br>oakage R<br>Time (n | 1.21<br>Sesults S | 7.07E-04          | Considered average<br>Design rate         | 5.9E-06<br>1.6E-05<br>7.9E-06 | 21.1<br>56.9 |
| d Level (metres) | ests struck out were no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.21          | 900       | 1200<br>S   | 1.30<br>oakage R<br>Time (n | 1.21<br>Sesults S | 7.07E-04          | Considered average<br>Design rate         | 5.9E-06<br>1.6E-05<br>7.9E-06 | 21.1<br>56.9 |
| d Level (metres) | ests struck out were no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.21          | 900       | 1200<br>S   | 1.30<br>oakage R<br>Time (n | 1.21<br>Sesults S | 7.07E-04          | Considered average<br>Design rate         | 5.9E-06<br>1.6E-05<br>7.9E-06 | 21.1<br>56.9 |
| d Level (metres) | ests struck out were no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.21          | 900       | 1200<br>S   | 1.30<br>oakage R<br>Time (n | 1.21<br>Sesults S | 7.07E-04          | Considered average<br>Design rate         | 5.9E-06<br>1.6E-05<br>7.9E-06 | 21.1<br>56.9 |
| d Level (metres) | ests struck out were no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.21          | 900       | 1200<br>S   | 1.30<br>oakage R<br>Time (n | 1.21<br>Sesults S | 7.07E-04          | Considered average<br>Design rate         | 5.9E-06<br>1.6E-05<br>7.9E-06 | 21.1<br>56.9 |
| d Level (metres) | <ul> <li>1.20</li> <li>ests struck out were no</li> <li>0</li> <l< td=""><td>1.21</td><td>900</td><td>1200<br/>S</td><td>1.30<br/>oakage R<br/>Time (n</td><td>1.21<br/>Sesults S</td><td>7.07E-04</td><td>Considered average<br/>Design rate</td><td>5.9E-06<br/>1.6E-05<br/>7.9E-06</td><td>21.1<br/>56.9</td></l<></ul> | 1.21          | 900       | 1200<br>S   | 1.30<br>oakage R<br>Time (n | 1.21<br>Sesults S | 7.07E-04          | Considered average<br>Design rate         | 5.9E-06<br>1.6E-05<br>7.9E-06 | 21.1<br>56.9 |
| d Level (metres) | ests struck out were no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.21          | 900       | 1200<br>S   | 1.30<br>oakage R<br>Time (n | 1.21<br>Sesults S | 7.07E-04          | Considered average<br>Design rate         | 5.9E-06<br>1.6E-05<br>7.9E-06 | 21.1<br>56.9 |
| Level (metres)   | <ul> <li>1.20</li> <li>ests struck out were no</li> <li>0</li> <l< td=""><td>1.21</td><td>900</td><td>1200<br/>S</td><td>1.30<br/>oakage R<br/>Time (n</td><td>1.21<br/>Sesults S</td><td>7.07E-04</td><td>Considered average<br/>Design rate</td><td>5.9E-06<br/>1.6E-05<br/>7.9E-06</td><td>21.1<br/>56.9</td></l<></ul> | 1.21          | 900       | 1200<br>S   | 1.30<br>oakage R<br>Time (n | 1.21<br>Sesults S | 7.07E-04          | Considered average<br>Design rate         | 5.9E-06<br>1.6E-05<br>7.9E-06 | 21.1<br>56.9 |
| d Level (metres) | <ul> <li>1.20</li> <li>ests struck out were no</li> <li>0</li> <l< td=""><td>1.21</td><td>900</td><td>1200<br/>S</td><td>1.30<br/>oakage R<br/>Time (n</td><td>1.21<br/>Sesults S</td><td>7.07E-04</td><td>Considered average<br/>Design rate</td><td>5.9E-06<br/>1.6E-05<br/>7.9E-06</td><td>21.1<br/>56.9</td></l<></ul> | 1.21          | 900       | 1200<br>S   | 1.30<br>oakage R<br>Time (n | 1.21<br>Sesults S | 7.07E-04          | Considered average<br>Design rate         | 5.9E-06<br>1.6E-05<br>7.9E-06 | 21.1<br>56.9 |
| d Level (metres) | <ul> <li>1.20</li> <li>ests struck out were no</li> <li>0</li> <l< td=""><td>1.21</td><td>900</td><td>1200<br/>S</td><td>1.30<br/>oakage R<br/>Time (n</td><td>1.21<br/>Sesults S</td><td>7.07E-04</td><td>Considered average<br/>Design rate</td><td>5.9E-06<br/>1.6E-05<br/>7.9E-06</td><td>21.1<br/>56.9</td></l<></ul> | 1.21          | 900       | 1200<br>S   | 1.30<br>oakage R<br>Time (n | 1.21<br>Sesults S | 7.07E-04          | Considered average<br>Design rate         | 5.9E-06<br>1.6E-05<br>7.9E-06 | 21.1<br>56.9 |
| d Level (metres) | <ul> <li>1.20</li> <li>ests struck out were no</li> <li>0</li> <l< td=""><td>1.21</td><td>900</td><td>1200<br/>S</td><td>1.30<br/>oakage R<br/>Time (n</td><td>1.21<br/>Sesults S</td><td>7.07E-04</td><td>Considered average<br/>Design rate</td><td>5.9E-06<br/>1.6E-05<br/>7.9E-06</td><td>21.1<br/>56.9</td></l<></ul> | 1.21          | 900       | 1200<br>S   | 1.30<br>oakage R<br>Time (n | 1.21<br>Sesults S | 7.07E-04          | Considered average<br>Design rate         | 5.9E-06<br>1.6E-05<br>7.9E-06 | 21.1<br>56.9 |
| d Level (metres) | 0 1.20<br>ests struck out were no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.21          | 900       | 1200<br>S   | 1.30<br>oakage R<br>Time (n | 1.21<br>Sesults S | 7.07E-04          | Considered average<br>Design rate         | 5.9E-06<br>1.6E-05<br>7.9E-06 | 21.1<br>56.9 |

|                         |                                                |                      |                   | FAL                | LING H               | EAD S                | OAKAGE TEST                      |                                                           |                               |                                |
|-------------------------|------------------------------------------------|----------------------|-------------------|--------------------|----------------------|----------------------|----------------------------------|-----------------------------------------------------------|-------------------------------|--------------------------------|
| CLIENT:                 |                                                | Calcutta Farm        |                   |                    |                      |                      | LOCATION:                        | Matamata                                                  |                               |                                |
| PROJECT                 |                                                | Tauranga Roa         | d Industr         | ial Subdiv         | ision                |                      | JOB NUMBER:                      | TGA2020-0304                                              |                               |                                |
| TEST LOC                | ATION:                                         | S06                  |                   |                    |                      |                      | TEST DATE:                       | 15/07/2021 - 16/07/2021                                   |                               |                                |
| T +     -   -           | Diamatan                                       |                      |                   | 0.40               |                      |                      |                                  | 0.000                                                     | 0                             |                                |
|                         | Diameter                                       |                      |                   | 0.10               |                      |                      | Base Area 'B'                    | 800.0                                                     |                               |                                |
| Test Hole               |                                                |                      |                   | 2.00               |                      |                      | Circumference 'C'                | 0.314                                                     | m2                            |                                |
| Groundwa                | ater Level                                     |                      | Not Er            | ncountered         | m                    |                      |                                  |                                                           |                               |                                |
| Time                    | Water Level BGL                                | Water depth          | Timo              | steps              | Donth                | steps                | Volume soaked                    | Soakage surface area                                      | Soaka                         | ge Rate                        |
| T                       | d                                              | =D-d                 | t0                | t1                 | h0                   | h1                   | V=(h0-h1)*B                      | A=(C*(h0+h1)/2)+B                                         |                               | SR*60*60*1000                  |
|                         | m                                              |                      |                   | sec                |                      |                      |                                  |                                                           |                               | litres/m2/hour                 |
| min                     |                                                | m                    | sec               | sec                | m                    | m                    | m3                               | m2                                                        | m3/m2/sec                     | ntres/mz/nour                  |
| 0                       | 0.00                                           | 2                    | -                 | -                  | -                    | -                    | -                                | -                                                         | -                             | -                              |
| 0.17                    | 0.30                                           | 1.70                 | 10.2              | 10                 | 2                    | 1.7                  | 2.36E-03                         | 0.59                                                      | -0.02                         | -72000.00                      |
| 0.33                    | 0.48                                           | 1.52                 | 10                | 20                 | 1.7                  | 1.52                 | 1.41E-03                         | 0.51                                                      | 2.8E-04                       | 990.8                          |
| 0.50                    | 0.60                                           | 1.4                  | 20                | 30                 | 1.52                 | 1.4                  | 9.42E-04                         | 0.47                                                      | 2.0E-04                       | 727.3                          |
| 0.67                    | 0.71                                           | 1.29                 | 30                | 40                 | 1.4                  | 1.29                 | 8.64E-04                         | 0.43                                                      | 2.0E-04                       | 722.6                          |
| 0.83                    | 0.81                                           | 1.19                 | 40                | 50                 | 1.29                 | 1.19                 | 7.85E-04                         | 0.40                                                      | 2.0E-04                       | 711.5                          |
| 1.00                    | 0.88                                           | 1.12                 | 50                | 60                 | 1.19                 | 1.12                 | 5.50E-04                         | 0.37                                                      | 1.5E-04                       | 533.9                          |
| 1.50                    | 1.07                                           | 0.93                 | 60                | 90                 | 1.12                 | 0.93                 | 1.49E-03                         | 0.33                                                      | 1.5E-04                       | 542.9                          |
| 2.00                    | 1.20                                           | 0.8                  | 90                | 120                | 0.93                 | 0.35                 | 1.02E-03                         | 0.28                                                      | 1.2E-04                       | 438.2                          |
| 2.00                    | 1.32                                           | 0.68                 | 120               | 120                | 0.93                 | 0.68                 | 9.42E-04                         | 0.28                                                      |                               | 438.2                          |
|                         |                                                |                      |                   |                    |                      |                      |                                  |                                                           | 1.3E-04                       |                                |
| 3.00                    | 1.39                                           | 0.61                 | 150               | 180                | 0.68                 | 0.61                 | 5.50E-04                         | 0.21                                                      | 8.7E-05                       | 313.4                          |
| 3.50                    | 1.47                                           | 0.53                 | 180               | 210                | 0.61                 | 0.53                 | 6.28E-04                         | 0.19                                                      | 1.1E-04                       | 403.4                          |
| 4.00                    | 1.52                                           | 0.48                 | 210               | 240                | 0.53                 | 0.48                 | 3.93E-04                         | 0.17                                                      | 7.9E-05                       | 283.0                          |
| 4.50                    | 1.57                                           | 0.43                 | 240               | 270                | 0.48                 | 0.43                 | 3.93E-04                         | 0.15                                                      | 8.7E-05                       | 312.5                          |
| 5.00                    | 1.61                                           | 0.39                 | 270               | 300                | 0.43                 | 0.39                 | 3.14E-04                         | 0.14                                                      | 7.7E-05                       | 275.9                          |
| 6.00                    | 1.65                                           | 0.35                 | 300               | 360                | 0.39                 | 0.35                 | 3.14E-04                         | 0.12                                                      | 4.2E-05                       | 151.9                          |
| 7.00                    | 1.67                                           | 0.33                 | 360               | 420                | 0.35                 | 0.33                 | 1.57E-04                         | 0.11                                                      | 2.3E-05                       | 82.2                           |
| 8.00                    | 1.69                                           | 0.31                 | 420               | 480                | 0.33                 | 0.31                 | 1.57E-04                         | 0.11                                                      | 2.4E-05                       | 87.0                           |
| 9.00                    | 1.71                                           |                      |                   |                    |                      |                      |                                  | 0.10                                                      |                               | 92.3                           |
|                         |                                                |                      |                   |                    |                      |                      |                                  |                                                           |                               |                                |
|                         |                                                | 0.29                 | 480               | 540                | 0.31                 | 0.29                 | 1.57E-04                         |                                                           | 2.6E-05                       |                                |
| 10.00                   | 1.72                                           | 0.28                 | 540               | 600                | 0.29                 | 0.28                 | 7.85E-05                         | 0.10                                                      | 1.3E-05                       | 48.39                          |
| 10.00<br>15.00          | 1.72<br>1.79                                   | 0.28<br>0.21         | 540<br>600        | 600<br>900         | 0.29<br>0.28         | 0.28<br>0.21         | 7.85E-05<br>5.50E-04             | 0.10<br>0.08                                              | 1.3E-05<br>2.2E-05            | 48.39<br>77.8                  |
| 10.00                   | 1.72                                           | 0.28                 | 540               | 600                | 0.29                 | 0.28                 | 7.85E-05                         | 0.10                                                      | 1.3E-05                       | 48.39                          |
| 10.00<br>15.00<br>20.00 | 1.72<br>1.79                                   | 0.28<br>0.21<br>0.15 | 540<br>600<br>900 | 600<br>900         | 0.29<br>0.28         | 0.28<br>0.21         | 7.85E-05<br>5.50E-04             | 0.10<br>0.08                                              | 1.3E-05<br>2.2E-05<br>2.4E-05 | 48.39<br>77.8                  |
| 10.00<br>15.00<br>20.00 | 1.72<br>1.79<br>1.85                           | 0.28<br>0.21<br>0.15 | 540<br>600<br>900 | 600<br>900<br>1200 | 0.29<br>0.28         | 0.28<br>0.21<br>0.15 | 7.85E-05<br>5.50E-04<br>4.71E-04 | 0.10<br>0.08<br>0.06<br>Considered average                | 1.3E-05<br>2.2E-05<br>2.4E-05 | 48.39<br>77.8<br>87.8<br>367.7 |
| 10.00<br>15.00<br>20.00 | 1.72<br>1.79<br>1.85                           | 0.28<br>0.21<br>0.15 | 540<br>600<br>900 | 600<br>900<br>1200 | 0.29<br>0.28<br>0.21 | 0.28<br>0.21<br>0.15 | 7.85E-05<br>5.50E-04<br>4.71E-04 | 0.10<br>0.08<br>0.06<br>Considered average                | 1.3E-05<br>2.2E-05<br>2.4E-05 | 48.39<br>77.8<br>87.8<br>367.7 |
| 10.00<br>15.00<br>20.00 | 1.72<br>1.79<br>1.85                           | 0.28<br>0.21<br>0.15 | 540<br>600<br>900 | 600<br>900<br>1200 | 0.29<br>0.28<br>0.21 | 0.28<br>0.21<br>0.15 | 7.85E-05<br>5.50E-04<br>4.71E-04 | 0.10<br>0.08<br>0.06<br>Considered average                | 1.3E-05<br>2.2E-05<br>2.4E-05 | 48.39<br>77.8<br>87.8<br>367.7 |
| 10.00<br>15.00<br>20.00 | 1.72<br>1.79<br>1.85<br>ts struck out were not | 0.28<br>0.21<br>0.15 | 540<br>600<br>900 | 600<br>900<br>1200 | 0.29<br>0.28<br>0.21 | 0.28<br>0.21<br>0.15 | 7.85E-05<br>5.50E-04<br>4.71E-04 | 0.10<br>0.08<br>0.06<br>Considered average<br>Design rate | 1.3E-05<br>2.2E-05<br>2.4E-05 | 48.39<br>77.8<br>87.8<br>367.7 |
| 10.00<br>15.00<br>20.00 | 1.72<br>1.79<br>1.85<br>ts struck out were not | 0.28<br>0.21<br>0.15 | 540<br>600<br>900 | 600<br>900<br>1200 | 0.29<br>0.28<br>0.21 | 0.28<br>0.21<br>0.15 | 7.85E-05<br>5.50E-04<br>4.71E-04 | 0.10<br>0.08<br>0.06<br>Considered average<br>Design rate | 1.3E-05<br>2.2E-05<br>2.4E-05 | 48.39<br>77.8<br>87.8<br>367.7 |
| 10.00<br>15.00<br>20.00 | 1.72<br>1.79<br>1.85<br>ts struck out were not | 0.28<br>0.21<br>0.15 | 540<br>600<br>900 | 600<br>900<br>1200 | 0.29<br>0.28<br>0.21 | 0.28<br>0.21<br>0.15 | 7.85E-05<br>5.50E-04<br>4.71E-04 | 0.10<br>0.08<br>0.06<br>Considered average<br>Design rate | 1.3E-05<br>2.2E-05<br>2.4E-05 | 48.39<br>77.8<br>87.8<br>367.7 |
| 10.00<br>15.00<br>20.00 | 1.72<br>1.79<br>1.85<br>ts struck out were not | 0.28<br>0.21<br>0.15 | 540<br>600<br>900 | 600<br>900<br>1200 | 0.29<br>0.28<br>0.21 | 0.28<br>0.21<br>0.15 | 7.85E-05<br>5.50E-04<br>4.71E-04 | 0.10<br>0.08<br>0.06<br>Considered average<br>Design rate | 1.3E-05<br>2.2E-05<br>2.4E-05 | 48.39<br>77.8<br>87.8<br>367.7 |
| 10.00<br>15.00<br>20.00 | 1.72<br>1.79<br>1.85<br>ts struck out were not | 0.28<br>0.21<br>0.15 | 540<br>600<br>900 | 600<br>900<br>1200 | 0.29<br>0.28<br>0.21 | 0.28<br>0.21<br>0.15 | 7.85E-05<br>5.50E-04<br>4.71E-04 | 0.10<br>0.08<br>0.06<br>Considered average<br>Design rate | 1.3E-05<br>2.2E-05<br>2.4E-05 | 48.39<br>77.8<br>87.8<br>367.7 |
| 10.00<br>15.00<br>20.00 | 1.72<br>1.79<br>1.85<br>ts struck out were not | 0.28<br>0.21<br>0.15 | 540<br>600<br>900 | 600<br>900<br>1200 | 0.29<br>0.28<br>0.21 | 0.28<br>0.21<br>0.15 | 7.85E-05<br>5.50E-04<br>4.71E-04 | 0.10<br>0.08<br>0.06<br>Considered average<br>Design rate | 1.3E-05<br>2.2E-05<br>2.4E-05 | 48.39<br>77.8<br>87.8<br>367.7 |
| 10.00<br>15.00<br>20.00 | 1.72<br>1.79<br>1.85<br>ts struck out were not | 0.28<br>0.21<br>0.15 | 540<br>600<br>900 | 600<br>900<br>1200 | 0.29<br>0.28<br>0.21 | 0.28<br>0.21<br>0.15 | 7.85E-05<br>5.50E-04<br>4.71E-04 | 0.10<br>0.08<br>0.06<br>Considered average<br>Design rate | 1.3E-05<br>2.2E-05<br>2.4E-05 | 48.39<br>77.8<br>87.8<br>367.7 |
| 10.00<br>15.00<br>20.00 | 1.72<br>1.79<br>1.85<br>ts struck out were not | 0.28<br>0.21<br>0.15 | 540<br>600<br>900 | 600<br>900<br>1200 | 0.29<br>0.28<br>0.21 | 0.28<br>0.21<br>0.15 | 7.85E-05<br>5.50E-04<br>4.71E-04 | 0.10<br>0.08<br>0.06<br>Considered average<br>Design rate | 1.3E-05<br>2.2E-05<br>2.4E-05 | 48.39<br>77.8<br>87.8<br>367.7 |
| 10.00<br>15.00<br>20.00 | 1.72<br>1.79<br>1.85<br>ts struck out were not | 0.28<br>0.21<br>0.15 | 540<br>600<br>900 | 600<br>900<br>1200 | 0.29<br>0.28<br>0.21 | 0.28<br>0.21<br>0.15 | 7.85E-05<br>5.50E-04<br>4.71E-04 | 0.10<br>0.08<br>0.06<br>Considered average<br>Design rate | 1.3E-05<br>2.2E-05<br>2.4E-05 | 48.39<br>77.8<br>87.8<br>367.7 |
| 10.00<br>15.00<br>20.00 | 1.72<br>1.79<br>1.85<br>ts struck out were not | 0.28<br>0.21<br>0.15 | 540<br>600<br>900 | 600<br>900<br>1200 | 0.29<br>0.28<br>0.21 | 0.28<br>0.21<br>0.15 | 7.85E-05<br>5.50E-04<br>4.71E-04 | 0.10<br>0.08<br>0.06<br>Considered average<br>Design rate | 1.3E-05<br>2.2E-05<br>2.4E-05 | 48.39<br>77.8<br>87.8<br>367.7 |
| 10.00<br>15.00<br>20.00 | 1.72<br>1.79<br>1.85<br>ts struck out were not | 0.28<br>0.21<br>0.15 | 540<br>600<br>900 | 600<br>900<br>1200 | 0.29<br>0.28<br>0.21 | 0.28<br>0.21<br>0.15 | 7.85E-05<br>5.50E-04<br>4.71E-04 | 0.10<br>0.08<br>0.06<br>Considered average<br>Design rate | 1.3E-05<br>2.2E-05<br>2.4E-05 | 48.39<br>77.8<br>87.8<br>367.7 |
| 10.00<br>15.00<br>20.00 | 1.72<br>1.79<br>1.85<br>ts struck out were not | 0.28<br>0.21<br>0.15 | 540<br>600<br>900 | 600<br>900<br>1200 | 0.29<br>0.28<br>0.21 | 0.28<br>0.21<br>0.15 | 7.85E-05<br>5.50E-04<br>4.71E-04 | 0.10<br>0.08<br>0.06<br>Considered average<br>Design rate | 1.3E-05<br>2.2E-05<br>2.4E-05 | 48.39<br>77.8<br>87.8<br>367.7 |
| 10.00<br>15.00<br>20.00 | 1.72<br>1.79<br>1.85<br>ts struck out were not | 0.28<br>0.21<br>0.15 | 540<br>600<br>900 | 600<br>900<br>1200 | 0.29<br>0.28<br>0.21 | 0.28<br>0.21<br>0.15 | 7.85E-05<br>5.50E-04<br>4.71E-04 | 0.10<br>0.08<br>0.06<br>Considered average<br>Design rate | 1.3E-05<br>2.2E-05<br>2.4E-05 | 48.39<br>77.8<br>87.8<br>367.7 |
| 10.00<br>15.00<br>20.00 | 1.72<br>1.79<br>1.85<br>ts struck out were not | 0.28<br>0.21<br>0.15 | 540<br>600<br>900 | 600<br>900<br>1200 | 0.29<br>0.28<br>0.21 | 0.28<br>0.21<br>0.15 | 7.85E-05<br>5.50E-04<br>4.71E-04 | 0.10<br>0.08<br>0.06<br>Considered average<br>Design rate | 1.3E-05<br>2.2E-05<br>2.4E-05 | 48.39<br>77.8<br>87.8<br>367.7 |
| 10.00<br>15.00<br>20.00 | 1.72<br>1.79<br>1.85<br>ts struck out were not | 0.28<br>0.21<br>0.15 | 540<br>600<br>900 | 600<br>900<br>1200 | 0.29<br>0.28<br>0.21 | 0.28<br>0.21<br>0.15 | 7.85E-05<br>5.50E-04<br>4.71E-04 | 0.10<br>0.08<br>0.06<br>Considered average<br>Design rate | 1.3E-05<br>2.2E-05<br>2.4E-05 | 48.39<br>77.8<br>87.8<br>367.7 |
| 10.00<br>15.00<br>20.00 | 1.72<br>1.79<br>1.85<br>ts struck out were not | 0.28<br>0.21<br>0.15 | 540<br>600<br>900 | 600<br>900<br>1200 | 0.29<br>0.28<br>0.21 | 0.28<br>0.21<br>0.15 | 7.85E-05<br>5.50E-04<br>4.71E-04 | 0.10<br>0.08<br>0.06<br>Considered average<br>Design rate | 1.3E-05<br>2.2E-05<br>2.4E-05 | 48.39<br>77.8<br>87.8<br>367.7 |
| 10.00<br>15.00<br>20.00 | 1.72<br>1.79<br>1.85<br>ts struck out were not | 0.28<br>0.21<br>0.15 | 540<br>600<br>900 | 600<br>900<br>1200 | 0.29<br>0.28<br>0.21 | 0.28<br>0.21<br>0.15 | 7.85E-05<br>5.50E-04<br>4.71E-04 | 0.10<br>0.08<br>0.06<br>Considered average<br>Design rate | 1.3E-05<br>2.2E-05<br>2.4E-05 | 48.39<br>77.8<br>87.8<br>367.7 |

1.80 2.00

| LIENT:<br>ROJEC | r:<br>CATION:                   | Calcutta Farm<br>Tauranga Roa<br>S07 |              |                    |                     |                    | OAKAGE TEST<br>LOCATION:<br>JOB NUMBER:<br>TEST DATE: | Matamata<br>TGA2020-0304<br>27/07/2021    |                    |                         |
|-----------------|---------------------------------|--------------------------------------|--------------|--------------------|---------------------|--------------------|-------------------------------------------------------|-------------------------------------------|--------------------|-------------------------|
|                 |                                 | 307                                  |              |                    |                     |                    |                                                       |                                           |                    |                         |
|                 | e Diameter                      |                                      |              | 0.10               |                     |                    | Base Area 'B'                                         | 0.008                                     |                    |                         |
|                 | e Depth 'D'<br>rater Level      |                                      | Not En       | 4.00<br>Icountered |                     |                    | Circumference 'C'                                     | 0.314                                     | m2                 |                         |
| lound           |                                 |                                      | NOTEN        | loountereu         |                     |                    |                                                       |                                           |                    |                         |
| Time<br>T       | Water Level BGL<br>d            | =D-d                                 | Time s<br>t0 | t1                 | h0 .                | steps<br><i>h1</i> | Volume soaked<br>V=(h0-h1)*B                          | Soakage surface area<br>A=(C*(h0+h1)/2)+B | SR=V/A/(t1-t0)     | ge Rate<br>SR*60*60*100 |
| min<br>0        | <i>т</i><br>1.4                 | <b>m</b><br>2.26                     | sec          | sec                | m                   | m                  | m3                                                    | m2                                        | m3/m2/sec          | litres/m2/hour          |
| 0.17            | 1.4                             | 2.20                                 | -<br>0       | -<br>10            | -<br>2.26           | -<br>2.00          | -<br>2.04E-03                                         | 0.68                                      | -<br>3.0E-04       | -<br>1085.8             |
| 0.33            | 2                               | 1.85                                 | 10           | 20                 | 2.20                | 1.85               | 1.18E-03                                              | 0.61                                      | 1.9E-04            | 692.3                   |
| 0.50            | 2.15                            | 1.64                                 | 20           | 30                 | 1.85                | 1.64               | 1.65E-03                                              | 0.56                                      | 3.0E-04            | 1067.8                  |
| 0.67            | 2.36                            | 1.56                                 | 30           | 40                 | 1.64                | 1.56               | 6.28E-04                                              | 0.50                                      | 1.2E-04            | 443.1                   |
| 0.83            | 2.30                            | 1.50                                 | 40           | 40<br>50           | 1.56                | 1.50               | 4.71E-04                                              | 0.49                                      | 9.6E-05            | 347.3                   |
| 1.00            | 2.5                             | 1.39                                 | 40<br>50     | 60                 | 1.50                | 1.39               | 8.64E-04                                              | 0.49                                      | 1.9E-04            | 673.5                   |
| 1.50            | 2.61                            | 1.29                                 | 60           | 90                 | 1.30                | 1.39               | 7.85E-04                                              | 0.40                                      | 6.1E-05            | 219.8                   |
| 2.00            | 2.01                            | 1.23                                 | 90           | 120                | 1.39                | 1.23               | 4.71E-04                                              | 0.40                                      | 3.9E-05            | 140.1                   |
| 2.00            | 2.77                            | 1.19                                 | 120          | 120                | 1.29                | 1.23               |                                                       | 0.40                                      |                    | 97.2                    |
|                 |                                 |                                      |              |                    |                     |                    | 3.14E-04                                              |                                           | 2.7E-05            |                         |
| 3.00            | 2.81                            | 1.17                                 | 150          | 180                | 1.19                | 1.17               | 1.57E-04                                              | 0.38                                      | 1.4E-05            | 49.8                    |
| 3.50            | 2.83                            | 1.15                                 | 180          | 210                | 1.17                | 1.15               | 1.57E-04                                              | 0.37                                      | 1.4E-05            | 50.6                    |
| 4.00            | 2.85                            | 1.13                                 | 210          | 240                | 1.15                | 1.13               | 1.57E-04                                              | 0.37                                      | 1.4E-05            | 51.5                    |
| 4.50            | 2.87                            | 1.11                                 | 240          | 270                | 1.13                | 1.11               | 1.57E-04                                              | 0.36                                      | 1.5E-05            | 52.4                    |
| 5.00            | 2.89                            | 1.09                                 | 270          | 300                | 1.11                | 1.09               | 1.57E-04                                              | 0.35                                      | 1.5E-05            | 53.3                    |
| 6.00            | 2.91                            | 1.06                                 | 300          | 360                | 1.09                | 1.06               | 2.36E-04                                              | 0.35                                      | 1.1E-05            | 40.9                    |
| 7.00            | 2.94                            | 1.04                                 | 360          | 420                | 1.06                | 1.04               | 1.57E-04                                              | 0.34                                      | 7.8E-06            | 27.9                    |
| 8.00            | 2.96                            | 1.01                                 | 420          | 480                | 1.04                | 1.01               | 2.36E-04                                              | 0.33                                      | 1.2E-05            | 42.9                    |
| 9.00            | 2.99                            | 0.99                                 | 480          | 540                | 1.01                | 0.99               | 1.57E-04                                              | 0.32                                      | 8.1E-06            | 29.3                    |
| 10.00           | 3.01                            | 0.87                                 | 540          | 600                | 0.99                | 0.87               | 9.42E-04                                              | 0.30                                      | 5.2E-05            | 188.5                   |
| 15.00           | 3.13                            | 0.79                                 | 600          | 900                | 0.87                | 0.79               | 6.28E-04                                              | 0.27                                      | 7.8E-06            | 28.1                    |
|                 |                                 |                                      |              |                    |                     |                    |                                                       |                                           |                    |                         |
| 20.00           | 3.21                            | 0.65                                 | 900          | 1200               | 0.79                | 0.65               | 1.10E-03                                              | 0.23<br>Considered average<br>Design rate |                    | 56.4<br>259.0<br>129.5  |
|                 | 3.21<br>sts struck out were not |                                      |              |                    |                     |                    |                                                       | Considered average                        | 7.2E-05            | 259.0                   |
|                 |                                 |                                      |              |                    | 0.79<br>oakage R    |                    |                                                       | Considered average                        | 7.2E-05            | 259.0                   |
|                 |                                 |                                      |              |                    | oakage R            |                    |                                                       | Considered average                        | 7.2E-05            | 259.0                   |
|                 |                                 |                                      |              |                    | oakage R<br>Time (r | esults S           |                                                       | Considered average                        | 7.2E-05            | 259.0                   |
|                 | sts struck out were not         | included in the a                    |              | S                  | oakage R<br>Time (r | esults S           | .07                                                   | Considered average<br>Design rate         | 7.2E-05<br>3.6E-05 | 259.0                   |
|                 | sts struck out were not         | included in the a                    |              | S                  | oakage R<br>Time (r | esults S           | .07                                                   | Considered average<br>Design rate         | 7.2E-05<br>3.6E-05 | 259.0                   |
| ote: Te         | sts struck out were not         | included in the a                    |              | S                  | oakage R<br>Time (r | esults S           | .07                                                   | Considered average<br>Design rate         | 7.2E-05<br>3.6E-05 | 259.0                   |
| ote: Te         | sts struck out were not         | included in the a                    |              | S                  | oakage R<br>Time (r | esults S           | .07                                                   | Considered average<br>Design rate         | 7.2E-05<br>3.6E-05 | 259.0                   |
| ote: Te         | sts struck out were not         | included in the a                    |              | S                  | oakage R<br>Time (r | esults S           | .07                                                   | Considered average<br>Design rate         | 7.2E-05<br>3.6E-05 | 259.0                   |
| ote: Te         | sts struck out were not         | included in the a                    |              | S                  | oakage R<br>Time (r | esults S           | .07                                                   | Considered average<br>Design rate         | 7.2E-05<br>3.6E-05 | 259.0                   |
| ote: Te         | o<br>0.5                        | included in the a                    |              | S                  | oakage R<br>Time (r | esults S           | .07                                                   | Considered average<br>Design rate         | 7.2E-05<br>3.6E-05 | 259.0                   |
| Level (metres)  | sts struck out were not         | included in the a                    |              | S                  | oakage R<br>Time (r | esults S           | .07                                                   | Considered average<br>Design rate         | 7.2E-05<br>3.6E-05 | 259.0                   |
| Level (metres)  | o<br>0.5                        | included in the a                    |              | S                  | oakage R<br>Time (r | esults S           | .07                                                   | Considered average<br>Design rate         | 7.2E-05<br>3.6E-05 | 259.0                   |
| Level (metres)  | sts struck out were not         | included in the a                    |              | S                  | oakage R<br>Time (r | esults S           | .07                                                   | Considered average<br>Design rate         | 7.2E-05<br>3.6E-05 | 259.0                   |
| Level (metres)  | sts struck out were not         | included in the a                    |              | S                  | oakage R<br>Time (r | esults S           | .07                                                   | Considered average<br>Design rate         | 7.2E-05<br>3.6E-05 | 259.0                   |
| Level (metres)  | sts struck out were not         | included in the a                    |              | S                  | oakage R<br>Time (r | esults S           | .07                                                   | Considered average<br>Design rate         | 7.2E-05<br>3.6E-05 | 259.0                   |
| Level (metres)  | sts struck out were not         | included in the a                    |              | S                  | oakage R<br>Time (r | esults S           | .07                                                   | Considered average<br>Design rate         | 7.2E-05<br>3.6E-05 | 259.0                   |
| Level (metres)  | sts struck out were not         | included in the a                    |              | S                  | oakage R<br>Time (r | esults S           | .07                                                   | Considered average<br>Design rate         | 7.2E-05<br>3.6E-05 | 259.0                   |
| ote: Te         | sts struck out were not         | included in the a                    |              | S                  | oakage R<br>Time (r | esults S           | .07                                                   | Considered average<br>Design rate         | 7.2E-05<br>3.6E-05 | 259.0                   |
| Level (metres)  | sts struck out were not         | included in the a                    |              | S                  | oakage R<br>Time (r | esults S           | .07                                                   | Considered average<br>Design rate         | 7.2E-05<br>3.6E-05 | 259.0                   |
| Level (metres)  | sts struck out were not         | included in the a                    |              | S                  | oakage R<br>Time (r | esults S           | .07                                                   | Considered average<br>Design rate         | 7.2E-05<br>3.6E-05 | 259.0                   |
| Level (metres)  | sts struck out were not         | included in the a                    |              | S                  | oakage R<br>Time (r | esults S           | .07                                                   | Considered average<br>Design rate         | 7.2E-05<br>3.6E-05 | 259.0                   |
| Level (metres)  | sts struck out were not         | included in the a                    |              | S                  | oakage R<br>Time (r | esults S           | .07                                                   | Considered average<br>Design rate         | 7.2E-05<br>3.6E-05 | 259.0                   |
| Level (metres)  | sts struck out were not         | included in the a                    |              | S                  | oakage R<br>Time (r | esults S           | .07                                                   | Considered average<br>Design rate         | 7.2E-05<br>3.6E-05 | 259.0                   |
| Level (metres)  | sts struck out were not         | included in the a                    |              | S                  | oakage R<br>Time (r | esults S           | .07                                                   | Considered average<br>Design rate         | 7.2E-05<br>3.6E-05 | 259.0                   |
| Level (metres)  | sts struck out were not         | included in the a                    |              | S                  | oakage R<br>Time (r | esults S           | .07                                                   | Considered average<br>Design rate         | 7.2E-05<br>3.6E-05 | 259.0                   |

| PROJECT:<br>TEST LOCATION:     Tauranga Road Industrial Subdivision<br>S08     JOB NUMBER:<br>TEST DATE:     TGA2020-0304<br>15/07/2021 - 16/07/2021       Test Hole Diameter<br>Test Hole Depth 'D'<br>Groundwater Level     0.10 m<br>2.50 m<br>Not Encountered m     Base Area 'B'<br>Circumference 'C'<br>0.314 m2     0.008 m2<br>0.314 m2       Time     Water Level BGL     Water depth<br>= D-d     Time steps<br>to<br>to     Depth steps<br>hot     Volume soaked<br>V=(h0-h1)*B     Soakage surface area<br>A=(C*(h0+h1)/2)+B     Soakage Rate<br>SR=V/A/(t1-t0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                         | <b>.</b>          |            | FAL         | LING H              | EAD S    | OAKAGE TEST       |                                   |                    |                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------|-------------------|------------|-------------|---------------------|----------|-------------------|-----------------------------------|--------------------|----------------|
| TEST LOCATON:         SS         TEST DATE:         1507/2021 - 15007/2021           Test Hole Delimiter<br>Est Hole Delimiter<br>Est Hole Delimiter<br>Schumers Level         0.10 m<br>Del Escourtered m         0.00 m<br>Del Schumers Level         0.00 m<br>D.03 m m2           Time         Witer Level BGI.         Weir Level BGI.         Weir Schumers Level         Doth steps<br>min         Doth steps<br>m         Volume scaked<br>m         Scakage surface area<br>m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                         |                   |            |             |                     |          | LOCATION:         | Matamata                          |                    |                |
| Test Hole Diameter<br>Test H                                                                                                                                                                                                                                                                                                                                                                                 |                                   |                                         |                   | d Industri | ial Subdivi | ision               |          |                   |                                   |                    |                |
| Test Hole Deph "D Keller" Keller" Circumference "C 0.314 m2<br>Strambuter Test Strack out were not included in the average<br>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 201 200                           |                                         | 000               |            |             |                     |          | ILOI DAIL.        | 10/07/2021                        |                    |                |
| Groundwater Level Bolt Water General Part of the steps of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rest Hole                         | e Diameter                              |                   |            | 0.10        | m                   |          | Base Area 'B'     | 0.008                             | m2                 |                |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |                                         |                   |            |             |                     |          | Circumference 'C' | 0.314                             | m2                 |                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Groundwa                          | ater Level                              |                   | Not Er     | ncountered  | m                   |          |                   |                                   |                    |                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Time                              | Water Leval BCI                         | Water denth       | Time       |             | Donth               | otono    | Valuma asakad     | Saakaga aurfaaa araa              | Saaka              | ma Bata        |
| $ \frac{min}{2} min m} m m sec sec m m m m3 m3 m2 m2 m3m2 tites m3m m3 m3 m2 m3m2 sec tites m3m3 m3m2 sec max m3m2 sec m3m3m2 sec m3m3m3m3m2 sec m3m3m3m3m2 sec m3m3m3m2 sec m3m3m2 sec m3m3m3m2 sec m3m3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                                         |                   |            |             |                     |          |                   |                                   |                    |                |
| $\frac{0}{10}  0  229  1  1  2  1  1  1  1  1  1  1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |                                         |                   |            |             |                     |          |                   |                                   |                    | litres/m2/hour |
| 0.33 	 0.37 	 2.01 	 10 	 20 	 2.13 	 2.01 	 9.42E-04 	 0.66 	 1.4E-04 	 5015 	 0.50 	 0.49 	 1.90 	 20 	 30 	 2.01 	 1.90 	 8.64E-04 	 0.52 	 1.4E-04 	 5000 	 0.66 	 1.80 	 30 	 40 	 1.90 	 1.80 	 7.85E-04 	 0.58 	 1.4E-04 	 5070 	 1.00 	 0.80 	 1.51 	 50 	 60 	 1.70 	 1.51 	 1.38 	 1.70 	 7.85E-04 	 0.56 	 1.4E-04 	 5070 	 1.00 	 0.80 	 1.51 	 50 	 60 	 1.70 	 1.51 	 1.39 	 1.06 	 2.051 	 2.9E-04 	 1049.1 	 1.51 	 1.37 	 1.10E-03 	 0.46 	 8.0E-05 	 2.867 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.864 	 0.33 	 4.863 	 3.864 	 0.33 	 4.863 	 3.864 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.863 	 2.864 	 0.33 	 4.863 	 2.866 	 2.863 	 2.863 	 2.864 	 0.33 	 4.863 	 3.864 	 0.43 	 0.863 	 3.864 	 0.863 	 3.864 	 0.863 	 3.864 	 0.863 	 3.864 	 0.863 	 3.864 	 0.863 	 3.864 	 0.863 	 3.864 	 0.863 	 3.864 	 0.863 	 3.864 	 0.863 	 3.864 	 0.863 	 3.864 	 0.863 	 3.864 	 0.863 	 3.864 	 0.863 	 3.864 	 0.863 	 3.864 	 0.863 	 3.864 	 0.863 	 3.864 	 0.863 	 3.864 	 0.863 	 3.864 	 0.863 	 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                 | 0                                       |                   | -          | -           | -                   | -        | -                 | -                                 | -                  | -              |
| 0.50 	 0.49 	 1.50 	 20 	 30 	 2.01 	 1.90 	 8.64E-04 	 0.62 	 1.4E-04 	 500. 0.67 	 0.60 	 1.80 	 30 	 40 	 1.90 	 1.80 	 7.85E-04 	 0.59 	 1.3E-04 	 4.80. 0.83 	 0.70 	 1.70 	 40 	 50 	 1.80 	 1.70 	 7.28E-04 	 0.56 	 1.4E-04 	 507. 0.80 	 1.51 	 50 	 60 	 1.70 	 1.51 	 1.3F 	 1.26 	 90 	 1.20 	 1.37 	 1.26 	 8.04E-04 	 0.42 	 0.8E-05 	 246.3 2.20 	 1.23 	 1.17 	 120 	 150 	 1.27 	 1.17 	 7.07E-04 	 0.39 	 0.66 	 4.80.56 	 2167. 2.20 	 1.23 	 1.17 	 120 	 150 	 1.29 	 1.17 	 7.07E-04 	 0.39 	 0.6E-05 	 2167. 2.20 	 1.24 	 1.17 	 120 	 150 	 1.29 	 1.17 	 7.07E-04 	 0.35 	 4.3E-05 	 1029. 3.20 	 1.30 	 1.04 	 150 	 190 	 1.30 	 1.26 	 90 	 3.33E-04 	 0.31 	 3.4E-05 	 120.6 3.20 	 1.46 	 0.98 	 200 	 240 	 1.04 	 0.99 	 0.38 	 3.38E-04 	 0.33 	 4.0E-05 	 104.5 3.20 	 1.55 	 0.88 	 270 	 3.00 	 0.99 	 0.99 	 3.33E-04 	 0.31 	 3.4E-05 	 122.6 5.00 	 1.55 	 0.88 	 270 	 3.00 	 0.99 	 0.88 	 0.52 	 4.71E-04 	 0.27 	 2.9E-05 	 1102.9 7.00 	 1.68 	 0.76 	 3.60 	 4.20 	 0.88 	 0.76 	 4.71E-04 	 0.27 	 2.9E-05 	 1102.9 7.00 	 1.68 	 0.76 	 3.60 	 4.20 	 0.88 	 0.82 	 4.71E-04 	 0.22 	 3.3E-04 	 1102.9 7.00 	 1.68 	 0.76 	 3.40 	 600 	 0.72 	 3.4E-04 	 0.13 	 3.4E-05 	 223.0 1.50 	 1.74 	 0.72 	 4.20 	 480 	 0.72 	 0.68 	 3.14E-04 	 0.24 	 2.2E-05 	 7.8.4 9.00 	 1.74 	 0.72 	 4.20 	 480 	 0.76 	 0.72 	 3.4E-04 	 0.22 	 3.2E-05 	 8.2 7.00 	 1.68 	 0.76 	 3.60 	 4.00 	 0.88 	 0.82 	 3.71E-04 	 0.22 	 3.2E-05 	 8.2 7.00 	 1.68 	 0.76 	 3.00 	 0.90 	 0.53 	 0.43 	 7.48E-04 	 0.13 	 3.4E-05 	 120.6 2.07 	 0.32 	 9.00 	 1.20 	 0.43 	 0.32 	 8.64E-04 	 0.13 	 2.3E-05 	 8.24 9.00 	 1.74 	 0.72 	 4.20 	 480 	 600 	 0.88 	 0.32 	 8.64E-04 	 0.13 	 2.3E-05 	 8.24 9.00 	 1.74 	 0.72 	 4.20 	 480 	 600 	 0.88 	 0.32 	 8.64E-04 	 0.16 	 1.7E-05 	 9.4 9.00 	 1.78 	 0.68 	 4.80 	 6.00 	 0.80 	 0.33 	 1.8E-03 	 0.20 	 9.9E-05 	 3.71 15.00 	 1.97 	 0.32 	 9.00 	 1.20 	 0.43 	 0.32 	 8.64E-04 	 0.13 	 2.3E-05 	 8.25 16.00 	 1.95 	 1.95 	 1.95 	 1.95 	 1.95 	 1.95 	 1.95 	 1.95 	 1.95 	 1.95 	 1.95 	 1.95 	 1.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.17                              | 0.21                                    | 2.13              | 0          | 10          | 2.29                | 2.13     | 1.26E-03          | 0.70                              | 1.8E-04            | 644.3          |
| 0.67 0.60 1.80 30 40 1.90 1.80 7.36E-04 0.59 1.3E-04 480. 0.083 0.70 1.70 40 50 1.80 1.70 7.85E-04 0.56 1.4E-04 597.0 1.00 0.80 1.51 50 60 1.70 1.51 1.34E-03 0.51 2.9E-04 1049.1 1.50 0.99 1.37 60 90 1.51 1.37 1.0E-03 0.46 80E-05 286.3 2.20 1.13 1.24 1.17 120 150 1.26 1.17 7.07E-04 0.39 60E-05 217.7 3.00 1.33 1.11 150 180 1.17 1.11 4.71E-04 0.37 4.5E-05 190.9 4.00 1.46 0.98 210 2.40 0.96 0.85 3.314E-04 0.33 4.4E-05 190.9 4.00 1.46 0.98 210 2.40 0.96 0.85 3.314E-04 0.33 4.4E-05 120.6 5.00 1.55 0.88 2.20 0.30 0.86 0.82 3.314E-04 0.33 4.4E-05 120.6 5.00 1.56 0.88 2.20 0.88 0.89 4.20 0.82 0.76 4.71E-04 0.29 3.1E-05 110.0 5.00 1.74 0.72 420 480 0.72 0.68 3.14E-04 0.23 2.3E-05 190.9 9.00 1.74 0.72 4.80 480 540 0.72 0.88 3.14E-04 0.23 2.3E-05 82.6 10.00 1.78 0.68 480 540 0.72 0.88 3.14E-04 0.23 2.3E-05 82.6 10.00 1.78 0.68 480 540 0.72 0.88 3.14E-04 0.23 2.3E-05 82.6 10.00 1.82 0.76 3.35 0.420 0.72 0.83 3.14E-04 0.23 2.3E-05 82.6 10.00 1.78 0.68 480 540 0.72 0.83 3.14E-04 0.23 2.3E-05 82.6 10.00 1.78 0.68 480 540 0.72 0.83 3.14E-04 0.23 2.3E-05 82.6 10.00 1.82 0.53 5.44 7.1E-04 0.24 2.2E-05 3.57.1 15.00 1.97 0.43 600 900 0.68 0.53 3.14E-04 0.23 2.3E-05 82.6 10.00 1.82 0.53 5.40 800 0.68 3.03 7.8E-04 0.16 1.7E-05 5.82.6 20.00 2.07 0.32 900 1200 0.43 0.32 8.64E-04 0.13 2.3E-05 82.5 Time (minutes) Vote: Tests struck out were not included in the average $V = V + V + V + V + V + V + V + V + V + V +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.33                              |                                         | 2.01              |            |             | 2.13                | 2.01     | 9.42E-04          | 0.66                              | 1.4E-04            | 515.5          |
| 0.83 0.70 1.70 40 50 1.80 1.70 7.88E-04 0.56 1.4E-04 507.0 151 2.9E-04 1049.1 150 0.99 1.37 60 90 1.51 1.37 1.26 8.64E-04 0.42 6.8E-05 2.86.7 2.50 1.24 1.17 120 150 1.26 1.17 1.17 7.07E-04 0.39 6.0E-05 2.46.3 3.00 1.33 1.11 150 180 1.17 1.11 4.71E-04 0.37 4.8E-05 1.54.5 3.50 1.39 1.04 180 2.10 1.17 1.11 4.71E-04 0.37 4.8E-05 1.54.5 3.50 1.39 1.04 180 2.10 1.11 1.04 5.50E-04 0.25 5.58E-05 190.9 3.33E-04 0.33 4.0E-05 114.2 4.50 1.51 0.95 2.40 2.70 0.99 0.95 3.314E-04 0.31 3.4E-05 1.24.6 1.24.6 1.25 0.26.0 1.62 0.82 3.00 380 0.88 0.52 4.71E-04 0.23 4.2E-05 120.4 0.30 6.2E-05 2.23.4 0.30 6.2E-05 2.23.4 0.31 4.4E-04 0.31 3.4E-05 110.4 0.99 2.10 1.41 0.04 0.56 0.4 0.30 6.2E-05 2.23.4 0.30 6.2E-05 2.23.4 0.30 6.2E-05 2.23.4 0.31 4.4E-04 0.31 3.4E-05 110.4 0.90 1.62 0.82 3.00 380 0.88 0.52 4.71E-04 0.26 3.1E-05 110.4 0.90 1.62 0.82 3.00 3.80 0.88 0.52 4.71E-04 0.26 3.1E-05 110.4 0.90 1.62 0.82 3.00 3.80 0.88 0.52 4.71E-04 0.26 3.1E-05 110.4 0.90 1.62 0.82 3.00 3.80 0.88 0.53 0.4E-04 0.30 6.2E-05 2.23.4 0.30 6.2E-05 2.23.4 0.31 6.2E-05 2.23.4 0.20 1.62 0.82 3.00 3.80 0.88 0.53 0.42 0.25 2.22E-05 8.24 0.25 0.22 0.25 0.22 0.25 0.22 0.25 0.22 0.25 0.22 0.25 0.22 0.25 0.22 0.25 0.22 0.25 0.22 0.25 0.22 0.25 0.22 0.25 0.22 0.25 0.22 0.25 0.22 0.25 0.22 0.25 0.22 0.25 0.22 0.25 0.22 0.25 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.50                              | 0.49                                    | 1.90              | 20         | 30          | 2.01                | 1.90     | 8.64E-04          | 0.62                              | 1.4E-04            | 500.0          |
| 100 0 0.80 1.51 50 60 1.70 1.51 1.446E-03 0.51 2.9E-04 1049.1 150 0.99 1.37 60 90 1.20 1.51 1.37 1.0E-03 0.46 80E-05 286.7 2.00 1.13 1.26 1.17 120 150 1.26 1.17 7.07E-04 0.39 60E-05 247.7 3.00 1.33 1.11 150 180 1.17 1.11 4.71E-04 0.37 4.3E-05 190.9 4.00 1.46 0.99 210 240 1.04 0.99 3.33E-04 0.33 4.4E-05 140.5 5.00 1.55 0.88 270 300 0.95 0.88 5.50E-04 0.33 4.4E-05 140.5 5.00 1.55 0.88 270 300 0.95 0.88 5.50E-04 0.30 6.2E-05 223.4 4.50 1.51 0.95 2.40 470 0.88 0.82 4.71E-04 0.27 2.9E-05 102.9 7.00 1.68 0.76 380 4420 0.82 0.76 4.71E-04 0.27 2.9E-05 110.2 9.00 1.74 0.72 4.20 480 0.76 0.72 3.14E-04 0.23 2.4E-05 78.4 9.00 1.74 0.72 4.20 480 0.76 0.72 3.14E-04 0.23 2.4E-05 78.4 9.00 1.74 0.72 4.20 480 0.88 0.83 1.18E-03 0.20 9.9E-05 357.1 15.00 1.97 0.43 600 9.90 0.53 0.43 7.45E-04 0.13 2.4E-05 190.9 1000 1.82 0.53 5.40 660 0.68 0.53 1.18E-03 0.20 9.9E-05 537.1 15.00 1.97 0.43 600 9.90 0.53 0.43 7.45E-04 0.13 2.4E-05 194.4 20.00 2.07 0.32 9.00 1.200 0.43 0.32 8.64E-04 0.13 2.4E-05 146.5 Note: Tests struck out were not included in the average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.67                              | 0.60                                    | 1.80              | 30         | 40          | 1.90                | 1.80     | 7.85E-04          | 0.59                              | 1.3E-04            | 480.0          |
| $\frac{150}{250} = \frac{0.99}{1.33} = \frac{137}{126} = \frac{60}{90} = \frac{90}{1251} = \frac{1.37}{1.37} = \frac{1.02-03}{1.37} = \frac{0.46}{1.26} = \frac{0.42}{0.42} = \frac{0.82-05}{0.82-63} = \frac{266.3}{246.3}$ $\frac{2.50}{1.34} = \frac{1.17}{1.17} = \frac{17.12}{1.17} = \frac{17.12}{1.14} = \frac{17.17}{1.16.44} = \frac{0.37}{0.37} = \frac{0.42-05}{0.35} = \frac{246.3}{0.350} = \frac{13.9}{1.39} = \frac{1.04}{1.44} = \frac{180}{1.92} = \frac{210}{1.11} = \frac{1.11}{1.14} = \frac{17.16}{0.37} = \frac{0.42}{0.35} = \frac{0.62-05}{0.35} = \frac{13.62}{0.35} = \frac{13.62}{0.35} = \frac{13.62}{0.35} = \frac{13.62}{0.33} = \frac{14.62}{0.40-0.35} = \frac{0.62-05}{0.33} = \frac{14.62}{0.40-0.33} = \frac{0.62-05}{0.33} = \frac{14.62}{0.40-0.33} = \frac{0.62-05}{0.33} = \frac{14.62}{0.40-0.33} = \frac{0.62-05}{0.33} = \frac{14.62}{0.40-0.33} = \frac{0.62-05}{0.32} = \frac{12.24}{0.33} = \frac{0.62-05}{0.33} = \frac{12.24}{0.40-0.5} = \frac{0.62}{0.234} = \frac{0.62}{0.30} = \frac{0.62-05}{0.2234} = \frac{0.62}{0.22} = $                                                                                         | 0.83                              | 0.70                                    | 1.70              | 40         | 50          | 1.80                | 1.70     | 7.85E-04          | 0.56                              | 1.4E-04            | 507.0          |
| $\frac{200}{133} = \frac{1.34}{1.17} = \frac{1.26}{1.20} = \frac{90}{120} = \frac{1.37}{1.26} = \frac{1.26}{1.17} = \frac{8.64E-04}{1.07E-04} = 0.42 = \frac{6.8E-06}{0.39} = \frac{246}{0.0E-05} = \frac{246}{1.17} = \frac{1.17}{1.11} $                                                                 | 1.00                              | 0.80                                    | 1.51              | 50         | 60          | 1.70                | 1.51     | 1.49E-03          | 0.51                              | 2.9E-04            | 1049.1         |
| $\frac{250}{300} = \frac{124}{133} = \frac{117}{111} + \frac{120}{150} = \frac{150}{126} = \frac{117}{114} + \frac{707E-04}{171E-04} = \frac{0.39}{0.37} + \frac{0.6E-05}{3.42E-05} = \frac{217}{194} + \frac{116}{196} = \frac{110}{111} + \frac{111}{114} + \frac{171E-04}{171E-04} = \frac{0.37}{114} + \frac{34E-05}{3.54E-05} = \frac{100}{194} + \frac{109}{9} = \frac{393E-04}{3.98E-04} = \frac{0.33}{0.33} + \frac{0.6E-05}{0.05} = \frac{124}{2} + \frac{111}{20} + \frac{111}{104} + \frac{111}{114} + \frac{1111}{114} + \frac{1111}{114} + \frac{111}{114} + \frac{111}{$ | 1.50                              | 0.99                                    | 1.37              | 60         | 90          | 1.51                | 1.37     | 1.10E-03          | 0.46                              | 8.0E-05            | 286.7          |
| $\frac{300}{100} = \frac{1.33}{1.31} = \frac{11.1}{100} = \frac{180}{1.17} = \frac{11.1}{1.11} = \frac{4.71E-04}{4.0.37} = \frac{0.37}{4.31E-06} = \frac{13.45}{1.45} = \frac{13.45}{1.46} = 13.$                                                                                               | 2.00                              | 1.13                                    | 1.26              | 90         | 120         | 1.37                | 1.26     | 8.64E-04          | 0.42                              | 6.8E-05            | 246.3          |
| $\frac{350}{4.00} = \frac{1.36}{1.46} = \frac{1.04}{1.99} = \frac{100}{210} = \frac{210}{210} = \frac{1.11}{200} = \frac{1.04}{1.04} = \frac{5.00-04}{0.99} = \frac{0.35}{0.39E-04} = \frac{0.35}{0.31} = \frac{4.00-5}{3.46E-05} = \frac{190.9}{120.6}$ $\frac{4.00}{1.55} = \frac{1.36}{0.00} = \frac{1.56}{1.52} = \frac{0.88}{2.20} = \frac{270}{0.099} = \frac{0.99}{0.95} = \frac{3.14E-04}{0.31} = \frac{0.31}{3.44E-05} = \frac{120.6}{120.6}$ $\frac{5.00}{1.62} = \frac{1.62}{0.82} = \frac{300}{300} = \frac{360}{360} = \frac{0.88}{0.82} = \frac{4.71E-04}{0.27} = \frac{0.29E-05}{2.234} = \frac{102.9}{1.6} = \frac{1100}{1.74} = \frac{10.72}{0.72} = \frac{420}{4.80} = \frac{0.76}{0.76} = \frac{0.72}{3.14E-04} = \frac{0.24}{0.24} = \frac{2.2E-05}{2.23E-05} = \frac{78.4}{8.2} = \frac{10.00}{1.74} = \frac{1.66}{0.68} = \frac{4.80}{0.76} = \frac{5.00}{0.68} = \frac{3.14E-04}{0.24} = \frac{0.22}{2.2E-05} = \frac{78.4}{78.4} = \frac{10.00}{1.82} = \frac{1.60}{0.53} = \frac{5.00}{0.68} = \frac{0.43}{0.424} = \frac{0.22}{0.29} = \frac{3.71}{0.5} = \frac{11000}{1.82} = \frac{1.60}{0.33} = \frac{0.99}{0.00} = \frac{0.53}{0.32} = \frac{0.43}{0.32} = \frac{0.44}{0.13} = \frac{0.28}{2.3E-05} = \frac{8.25}{82.5}$ Note: Tests struck out were not included in the average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.50                              | 1.24                                    | 1.17              | 120        | 150         | 1.26                | 1.17     | 7.07E-04          | 0.39                              | 6.0E-05            | 217.7          |
| $\frac{4.00}{1.66} = \frac{1.46}{0.98} = \frac{210}{240} = \frac{240}{1.04} = \frac{104}{0.99} = \frac{3.99E-04}{3.98E-04} = \frac{0.33}{0.33} = \frac{4.0E-05}{0.66} = \frac{144.2}{12.06} = \frac{144.2}{10.95} = \frac{144.2}{0.95} = 1$                                                                                               | 3.00                              | 1.33                                    | 1.11              | 150        | 180         | 1.17                | 1.11     | 4.71E-04          | 0.37                              | 4.3E-05            | 154.5          |
| $\frac{4.00}{1.66} = \frac{1.46}{0.98} = \frac{210}{240} = \frac{240}{1.04} = \frac{104}{0.99} = \frac{3.98 \pm 04}{3.14 \pm 04} = \frac{0.33}{0.31} = \frac{4.06 \pm 05}{0.516 \pm 0.88} = \frac{270}{23.4} = \frac{270}{0.99} = \frac{0.95}{0.99} = \frac{3.14 \pm 04}{0.30} = \frac{0.31}{0.26 \pm 0.56} = \frac{123.4}{10.65} = \frac{10.6}{10.28} = \frac{123.4}{0.27} = \frac{10.6}{0.27} = \frac{10.6}{0.28} = \frac{10.6}{0.2$                                                         |                                   |                                         |                   |            |             |                     |          | 5.50E-04          |                                   |                    |                |
| $\frac{4.50}{1.51}$ $\frac{1.51}{1.51}$ $\frac{0.95}{1.52}$ $\frac{240}{1.52}$ $\frac{270}{1.52}$ $\frac{0.99}{1.52}$ $\frac{0.99}{1.78}$ $\frac{0.99}{1.78}$ $\frac{0.98}{1.605}$ $\frac{0.88}{1.74}$ $\frac{0.76}{1.22}$ $\frac{0.74}{1.74}$ $\frac{0.72}{1.2420}$ $\frac{420}{480}$ $\frac{0.76}{0.72}$ $\frac{0.74}{1.464}$ $\frac{0.24}{2.22-05}$ $\frac{2.23-05}{7.14}$ $\frac{0.22}{2.25-05}$ $\frac{0.22}{2.25-05}$ $\frac{0.22}{7.2}$ $\frac{0.13}{1.200}$ $\frac{0.68}{0.53}$ $\frac{0.43}{1.48E-04}$ $\frac{0.23}{2.22.05}$ $\frac{0.22}{2.5-05}$ $\frac{0.22}{3.25-05}$ $\frac{0.22}{3.25-$                                                                                                                 | 4.00                              | 1.46                                    | 0.99              | 210        | 240         | 1.04                | 0.99     | 3.93E-04          | 0.33                              |                    | 144.2          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.50                              | 1.51                                    | 0.95              | 240        | 270         | 0.99                | 0.95     |                   | 0.31                              | 3.4E-05            | 120.6          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.00                              | 1.55                                    | 0.88              | 270        | 300         | 0.95                | 0.88     | 5.50E-04          | 0.30                              | 6.2E-05            | 223.4          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | 1.62                                    |                   | 300        | 360         |                     | 0.82     | 4.71E-04          | 0.27                              |                    |                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   | 1.68                                    |                   | 360        | 420         |                     | 0.76     |                   |                                   |                    | 110.4          |
| 10.00 1.82 0.53 540 600 0.68 0.53 1.18-03 0.20 9.96-05 397.1 15.00 197 0.43 600 900 0.53 0.43 7.85-04 0.16 1.77-05 89.4 20.00 2.07 0.32 900 1200 0.43 0.32 8.64E-04 0.13 2.3E-05 82.5 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.77-05 89.4 0.16 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.00                              | 1.74                                    | 0.72              | 420        | 480         | 0.76                | 0.72     | 3.14E-04          | 0.24                              |                    | 78.4           |
| 10.00 	 1.82 	 0.53 	 540 	 600 	 0.68 	 0.53 	 1.18-03 	 0.20 	 9.9E-05 	 397.1 	 15.00 	 127 	 0.43 	 600 	 900 	 0.53 	 0.43 	 7.8E-04 	 0.16 	 17E-05 	 59.4 	 20.00 	 2.07 	 0.32 	 900 	 1200 	 0.43 	 0.32 	 8.64E-04 	 0.13 	 2.3E-05 	 82.5 	 Considered average 	 8.1E-05 	 293.0 	 Design rate 	 4.1E-05 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | 1.78                                    |                   |            | 540         |                     | 0.68     |                   |                                   |                    |                |
| 15.00 	 1.97 	 0.43 	 600 	 900 	 0.53 	 0.43 	 7.85E-04 	 0.16 	 1.7E-05 	 59.4 	 82.5 	 20.00 	 2.07 	 0.32 	 900 	 1200 	 0.43 	 0.32 	 8.64E-04 	 0.13 	 2.3E-05 	 82.5 	 293.0 	 Design rate 	 4.1E-05 	 293.0 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5 	 146.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.00                             | 1.82                                    | 0.53              | 540        | 600         | 0.68                | 0.53     |                   | 0.20                              |                    | 357.1          |
| 20.00 2.07 0.32 900 1200 0.43 0.32 8.64E-04 0.13 2.3E-05 82.5<br>Considered average 8.1E-05 293.0<br>Design rate 4.1E-05 146.5<br>Note: Tests struck out were not included in the average<br>Soakage Results 508<br>Time (minutes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                                         |                   | 600        | 900         |                     |          |                   |                                   |                    | 59.4           |
| Considered average 8.1E-05 293.0<br>Design rate 8.1E-05 146.5<br>Note: Tests struck out were not included in the average<br>Soakage Results S08<br>Time (minutes)<br>0 5 10 15 20 25<br>0 0 5 10 10 10 25 20 25<br>0 0 0 10 10 10 10 10 10 10 10 10 10 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | 2.07                                    |                   | 000        | 1000        |                     | 0.00     |                   | 0.12                              |                    |                |
| Time (minutes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   | 2.01                                    | 0.02              | 900        | 1200        | 0.43                | 0.32     | 8.04E-04          | Considered average                | 8.1E-05            | 293.0          |
| Time (minutes)<br>0 5 10 15 20 25<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |                                         |                   |            | 1200        | 0.43                | 0.32     | 8.04E-V4          | Considered average                | 8.1E-05            | 293.0          |
| b b b b b b b b b b b b b b b b b b b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                         |                   |            |             |                     |          |                   | Considered average                | 8.1E-05            | 293.0          |
| 0<br>0.5<br>1.5<br>2<br>1.5<br>2<br>1.5<br>2<br>1.5<br>2<br>1.5<br>2<br>1.5<br>1.5<br>2<br>1.5<br>2<br>1.5<br>2<br>1.5<br>2<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                                         |                   |            |             | oakage R            | esults S |                   | Considered average                | 8.1E-05            | 293.0          |
| Los                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   | sts struck out were not                 | included in the a |            | S           | oakage R<br>Time (r | esults S | 08                | Considered average<br>Design rate | 8.1E-05<br>4.1E-05 | 293.0          |
| Pinus 1.5<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | sts struck out were not                 | included in the a |            | S           | oakage R<br>Time (r | esults S | 08                | Considered average<br>Design rate | 8.1E-05<br>4.1E-05 | 293.0          |
| Pinus 1.5<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | sts struck out were not                 | included in the a |            | S           | oakage R<br>Time (r | esults S | 08                | Considered average<br>Design rate | 8.1E-05<br>4.1E-05 | 293.0          |
| Provide the second seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Note: Tes                         | sts struck out were not                 | included in the a |            | S           | oakage R<br>Time (r | esults S | 08                | Considered average<br>Design rate | 8.1E-05<br>4.1E-05 | 293.0          |
| Provide the second seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Note: Tes                         | o                                       | included in the a |            | S           | oakage R<br>Time (r | esults S | 08                | Considered average<br>Design rate | 8.1E-05<br>4.1E-05 | 293.0          |
| Provide the second seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Note: Tes                         | o                                       | included in the a |            | S           | oakage R<br>Time (r | esults S | 08                | Considered average<br>Design rate | 8.1E-05<br>4.1E-05 | 293.0          |
| Pinot 1<br>Pinot 1<br>Pin                                                                                                                       | Note: Tes                         | o                                       | included in the a |            | S           | oakage R<br>Time (r | esults S | 08                | Considered average<br>Design rate | 8.1E-05<br>4.1E-05 | 293.0          |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Note: Tes                         | o                                       | included in the a |            | S           | oakage R<br>Time (r | esults S | 08                | Considered average<br>Design rate | 8.1E-05<br>4.1E-05 | 293.0          |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Note: Tes                         | o                                       | included in the a |            | S           | oakage R<br>Time (r | esults S | 08                | Considered average<br>Design rate | 8.1E-05<br>4.1E-05 | 293.0          |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Note: Tes                         | o                                       | included in the a |            | S           | oakage R<br>Time (r | esults S | 08                | Considered average<br>Design rate | 8.1E-05<br>4.1E-05 | 293.0          |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Note: Tes                         | o                                       | included in the a |            | S           | oakage R<br>Time (r | esults S | 08                | Considered average<br>Design rate | 8.1E-05<br>4.1E-05 | 293.0          |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Note: Tes                         | o 0                                     | included in the a |            | S           | oakage R<br>Time (r | esults S | 08                | Considered average<br>Design rate | 8.1E-05<br>4.1E-05 | 293.0          |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Note: Tes                         | o<br>0<br>0.5<br>1                      | included in the a |            | S           | oakage R<br>Time (r | esults S | 08                | Considered average<br>Design rate | 8.1E-05<br>4.1E-05 | 293.0          |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Note: Tes                         | o<br>0<br>0.5<br>1                      | included in the a |            | S           | oakage R<br>Time (r | esults S | 08                | Considered average<br>Design rate | 8.1E-05<br>4.1E-05 | 293.0          |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Note: Tes                         | o<br>0<br>0.5<br>1                      | included in the a |            | S           | oakage R<br>Time (r | esults S | 08                | Considered average<br>Design rate | 8.1E-05<br>4.1E-05 | 293.0          |
| 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Note: Tes                         | o<br>0<br>0.5<br>1                      | included in the a |            | S           | oakage R<br>Time (r | esults S | 08                | Considered average<br>Design rate | 8.1E-05<br>4.1E-05 | 293.0          |
| 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Note: Tes                         | 0<br>0<br>0.5<br>1<br>1.5               | included in the a |            | S           | oakage R<br>Time (r | esults S | 08                | Considered average<br>Design rate | 8.1E-05<br>4.1E-05 | 293.0          |
| 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Note: Tes                         | 0<br>0<br>0.5<br>1<br>1.5               | included in the a |            | S           | oakage R<br>Time (r | esults S | 08                | Considered average<br>Design rate | 8.1E-05<br>4.1E-05 | 293.0          |
| 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Note: Tes                         | 0<br>0<br>0.5<br>1<br>1.5               | included in the a |            | S           | oakage R<br>Time (r | esults S | 08                | Considered average<br>Design rate | 8.1E-05<br>4.1E-05 | 293.0          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Depth Below Ground Level (metres) | o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | included in the a |            | S           | oakage R<br>Time (r | esults S | 08                | Considered average<br>Design rate | 8.1E-05<br>4.1E-05 | 293.0          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Depth Below Ground Level (metres) | o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | included in the a |            | S           | oakage R<br>Time (r | esults S | 08                | Considered average<br>Design rate | 8.1E-05<br>4.1E-05 | 293.0          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Depth Below Ground Level (metres) | o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | included in the a |            | S           | oakage R<br>Time (r | esults S | 08                | Considered average<br>Design rate | 8.1E-05<br>4.1E-05 | 293.0          |

| ENT:<br>DJECT:<br>T LOC           | ATION:                         | Calcutta Farm<br>Tauranga Roa<br><mark>S09</mark> |            |                    |                     |             | OAKAGE TEST<br>LOCATION:<br>JOB NUMBER:<br>TEST DATE: | Matamata<br>TGA2020-0304<br>15/07/2021 - 16/07/2021 |                         |                        |
|-----------------------------------|--------------------------------|---------------------------------------------------|------------|--------------------|---------------------|-------------|-------------------------------------------------------|-----------------------------------------------------|-------------------------|------------------------|
| t Hole                            | Diameter<br>Depth 'D'          |                                                   |            | 0.10<br>2.00       | m                   |             | Base Area 'B'<br>Circumference 'C'                    | 0.008<br>0.314                                      |                         |                        |
| undwa                             | ter Level                      |                                                   | Not Er     | ncountered         | m                   |             |                                                       |                                                     |                         |                        |
| ime<br>T                          | Water Level BGL<br>d           | Water depth<br>=D-d                               | Time<br>t0 | steps<br><i>t1</i> | Depth<br>h0         | steps<br>h1 | Volume soaked<br><i>V=(h0-h1)*B</i>                   | Soakage surface area<br>A=(C*(h0+h1)/2)+B           | Soaka<br>SR=V/A/(t1-t0) | ge Rate<br>SR*60*60*1  |
| nin                               | m                              | m                                                 | sec        | sec                | m                   | m           | m3 ´                                                  | m2                                                  | m3/m2/sec               | litres/m2/h            |
| 0                                 | 0                              | 1.89                                              | -          | -                  | -                   | -           | -                                                     | -                                                   | -                       | -                      |
| ).17                              | 0.11                           | 1.84                                              | 0          | 10                 | 1.89                | 1.84        | 3.93E-04                                              | 0.59                                                | 6.6E-05                 | 238.1                  |
| .33                               | 0.16                           | 1.80                                              | 10         | 20                 | 1.84                | 1.80        | 3.14E-04                                              | 0.58                                                | 5.4E-05                 | 195.1                  |
| ).50                              | 0.20                           | 1.77                                              | 20         | 30                 | 1.80                | 1.77        | 2.36E-04                                              | 0.57                                                | 4.1E-05                 | 149.2                  |
| ).67                              | 0.23                           | 1.72                                              | 30         | 40                 | 1.77                | 1.72        | 3.93E-04                                              | 0.56                                                | 7.1E-05                 | 254.2                  |
| .83                               | 0.28                           | 1.68                                              | 40         | 50                 | 1.72                | 1.68        | 3.14E-04                                              | 0.54                                                | 5.8E-05                 | 208.7                  |
| .00                               | 0.32                           | 1.58                                              | 50         | 60                 | 1.68                | 1.58        | 7.85E-04                                              | 0.52                                                | 1.5E-04                 | 543.8                  |
| .50                               | 0.42                           | 1.49                                              | 60         | 90                 | 1.58                | 1.49        | 7.07E-04                                              | 0.49                                                | 4.8E-05                 | 173.1                  |
| .00                               | 0.51                           | 1.40                                              | 90         | 120                | 1.49                | 1.40        | 7.07E-04                                              | 0.46                                                | 5.1E-05                 | 183.7                  |
| .50                               | 0.60                           | 1.32                                              | 120        | 150                | 1.40                | 1.32        | 6.28E-04                                              | 0.44                                                | 4.8E-05                 | 173.3                  |
| .00                               | 0.68                           | 1.26                                              | 150        | 180                | 1.32                | 1.26        | 4.71E-04                                              | 0.41                                                | 3.8E-05                 | 136.9                  |
| .50                               | 0.74                           | 1.21                                              | 180        | 210                | 1.26                | 1.21        | 3.93E-04                                              | 0.40                                                | 3.3E-05                 | 119.0                  |
| .00                               | 0.79                           | 1.15                                              | 210        | 240                | 1.21                | 1.15        | 4.71E-04                                              | 0.38                                                | 4.1E-05                 | 149.4                  |
| .50                               | 0.85                           | 1.10                                              | 240        | 270                | 1.15                | 1.10        | 3.93E-04                                              | 0.36                                                | 3.6E-05                 | 130.4                  |
| .00                               | 0.90                           | 1.02                                              | 240        | 300                | 1.10                | 1.02        | 6.28E-04                                              | 0.34                                                | 6.1E-05                 | 221.2                  |
| .00                               | 0.98                           | 0.94                                              | 300        | 360                | 1.02                | 0.94        | 6.28E-04                                              | 0.34                                                |                         | 119.4                  |
|                                   |                                |                                                   |            |                    |                     |             |                                                       |                                                     | 3.3E-05                 |                        |
| .00                               | 1.06                           | 0.88                                              | 360        | 420                | 0.94                | 0.88        | 4.71E-04                                              | 0.29                                                | 2.7E-05                 | 96.3                   |
| .00                               | 1.12                           | 0.82                                              | 420        | 480                | 0.88                | 0.82        | 4.71E-04                                              | 0.27                                                | 2.9E-05                 | 102.9                  |
| .00                               | 1.18                           | 0.77                                              | 480        | 540                | 0.82                | 0.77        | 3.93E-04                                              | 0.26                                                | 2.5E-05                 | 91.5                   |
| 0.00                              | 1.23                           | 0.60                                              | 540        | 600                | 0.77                | 0.60        | 1.34E-03                                              | 0.22                                                | 1.0E-04                 | 359.2                  |
| 5.00                              | 1.40                           | 0.48                                              | 600        | 900                | 0.60                | 0.48        | 9.42E-04                                              | 0.18                                                | 1.8E-05                 | 63.7                   |
|                                   |                                |                                                   |            |                    |                     |             |                                                       |                                                     |                         |                        |
| 0.00                              | 1.52                           | 0.32                                              | 900        | 1200               | 0.48                | 0.32        | 1.26E-03                                              | 0.13<br>Considered average<br>Design rate           |                         | 182.0                  |
|                                   |                                | 0.32                                              | 900        |                    | 0.48                | 0.32        | 1.26E-03                                              |                                                     | 5.1E-05                 | 182.0                  |
|                                   | 1.52                           | 0.32                                              | 900        | 1200               | oakage R            | esults S    |                                                       | Considered average                                  | 5.1E-05                 | 182.0                  |
|                                   | 1.52<br>ts struck out were not | 0.32                                              | 900        | 1200<br>S          | oakage R<br>Time (r |             | .09                                                   | Considered average<br>Design rate                   | 5.1E-05<br>2.5E-05      | 182.0                  |
|                                   | 1.52<br>ts struck out were not | 0.32                                              | 900        | 1200               | oakage R<br>Time (r | esults S    |                                                       | Considered average                                  | 5.1E-05                 | 182.0                  |
|                                   | 1.52<br>ts struck out were not | 0.32                                              | 900        | 1200<br>S          | oakage R<br>Time (r | esults S    | .09                                                   | Considered average<br>Design rate                   | 5.1E-05<br>2.5E-05      | 182.0                  |
| : Tes                             | 1.52<br>ts struck out were not | 0.32                                              | 900        | 1200<br>S          | oakage R<br>Time (r | esults S    | .09                                                   | Considered average<br>Design rate                   | 5.1E-05<br>2.5E-05      | 182.0                  |
| e: Test                           | 1.52<br>ts struck out were not | 0.32                                              | 900        | 1200<br>S          | oakage R<br>Time (r | esults S    | .09                                                   | Considered average<br>Design rate                   | 5.1E-05<br>2.5E-05      | 182.0                  |
| : Tes                             | 1.52<br>ts struck out were not | 0.32                                              | 900        | 1200<br>S          | oakage R<br>Time (r | esults S    | .09                                                   | Considered average<br>Design rate                   | 5.1E-05<br>2.5E-05      | 182.0                  |
| Level (metres)                    | 1.52                           | 0.32                                              | 900        | 1200<br>S          | oakage R<br>Time (r | esults S    | .09                                                   | Considered average<br>Design rate                   | 5.1E-05<br>2.5E-05      | 182.0                  |
| Level (metres)                    | 1.52<br>ts struck out were not | 0.32                                              | 900        | 1200<br>S          | oakage R<br>Time (r | esults S    | .09                                                   | Considered average<br>Design rate                   | 5.1E-05<br>2.5E-05      | 182.0                  |
| Level (metres)                    | 1.52                           | 0.32                                              | 900        | 1200<br>S          | oakage R<br>Time (r | esults S    | .09                                                   | Considered average<br>Design rate                   | 5.1E-05<br>2.5E-05      | 182.0                  |
| Level (metres)                    | 1.52                           | 0.32                                              | 900        | 1200<br>S          | oakage R<br>Time (r | esults S    | .09                                                   | Considered average<br>Design rate                   | 5.1E-05<br>2.5E-05      | 112.9<br>182.0<br>91.0 |
| Level (metres)                    | 1.52                           | 0.32                                              | 900        | 1200<br>S          | oakage R<br>Time (r | esults S    | .09                                                   | Considered average<br>Design rate                   | 5.1E-05<br>2.5E-05      | 182.0                  |
| Level (metres)                    | 1.52                           | 0.32                                              | 900        | 1200<br>S          | oakage R<br>Time (r | esults S    | .09                                                   | Considered average<br>Design rate                   | 5.1E-05<br>2.5E-05      | 182.0                  |
| low Ground Level (metres)         | 1.52                           | 0.32                                              | 900        | 1200<br>S          | oakage R<br>Time (r | esults S    | .09                                                   | Considered average<br>Design rate                   | 5.1E-05<br>2.5E-05      | 182.0                  |
| Depth Below Ground Level (metres) | 1.52                           | 0.32                                              | 900        | 1200<br>S          | oakage R<br>Time (r | esults S    | .09                                                   | Considered average<br>Design rate                   | 5.1E-05<br>2.5E-05      | 182.0                  |
| Depth Below Ground Level (metres) | 1.52<br>ts struck out were not | 0.32                                              | 900        | 1200<br>S          | oakage R<br>Time (r | esults S    | .09                                                   | Considered average<br>Design rate                   | 5.1E-05<br>2.5E-05      | 182.0                  |
| Depth Below Ground Level (metres) | 1.52                           | 0.32                                              | 900        | 1200<br>S          | oakage R<br>Time (r | esults S    | .09                                                   | Considered average<br>Design rate                   | 5.1E-05<br>2.5E-05      | 182.0                  |

| T LOCATION:<br>t Hole Diameter<br>t Hole Depth 'D'<br>undwater Level<br>ime Water Level<br>ime 0 0<br>17 0.04<br>33 0.08<br>50 0.11<br>67 0.13<br>83 0.16<br>.00 0.18<br>.50 0.25<br>.00 0.40<br>.50 0.35<br>.00 0.40<br>.50 0.59<br>.00 0.66<br>.00 0.74<br>.00 0.74<br>.00 0.85<br>.00 0.74<br>.00 0.85<br>.00 0.74<br>.00 0.41<br>.00 0.74<br>.00 0.41<br>.00 0.74<br>.00 0.44<br>.00 0.74<br>.00 0.74<br>.00 0.45<br>.00 0.44<br>.00 0.74<br>.00 0.45<br>.00 0.44<br>.00 0.74<br>.00 0.74<br>.00 0.74<br>.00 0.45<br>.00 0.44<br>.00 0.74<br>.00 0.74<br>.00 0.45<br>.00 0.45 .00 0.45                 | evel BGL W<br>7<br>7<br>0<br>04<br>08<br>11<br>13<br>16<br>18<br>25<br>3<br>35<br>40<br>46<br>50<br>54<br>40<br>46<br>55<br>56<br>66<br>74<br>79<br>85<br>91<br>13<br>13                                                                 | Water depth<br>=D-d<br>m<br>1.96<br>1.92<br>1.89<br>1.87<br>1.84<br>1.82<br>1.75<br>1.70<br>1.65<br>1.60<br>1.54<br>1.50<br>1.54<br>1.50<br>1.46<br>1.51<br>1.20<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71<br>0.49 | Time<br>t0<br>sec<br>-<br>0<br>10<br>20<br>30<br>40<br>50<br>60<br>90<br>120<br>150<br>180<br>210<br>240<br>270<br>300<br>360<br>420<br>300<br>360<br>420<br>540<br>600<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90 | 0.10<br>2.00<br>ncountered<br>steps<br>11<br>20<br>30<br>40<br>50<br>60<br>90<br>120<br>150<br>150<br>150<br>150<br>150<br>150<br>150<br>150<br>300<br>360<br>420<br>480<br>270<br>300<br>360<br>420<br>420<br>420<br>420<br>420<br>420<br>420<br>420<br>420<br>42 | m<br>m                                                                                                                                                                                                                                                  | n steps<br>h1<br>m<br>-<br>1.92<br>1.89<br>1.87<br>1.84<br>1.82<br>1.75<br>1.70<br>1.65<br>1.60<br>1.54<br>1.50<br>1.54<br>1.50<br>1.46<br>1.41<br>1.34<br>1.22<br>1.21<br>1.34<br>1.22<br>1.21<br>1.34<br>1.22<br>1.45<br>1.40<br>1.45<br>1.40<br>1.45<br>1.40<br>1.54<br>1.45<br>1.40<br>1.45<br>1.40<br>1.54<br>1.45<br>1.40<br>1.45<br>1.40<br>1.54<br>1.45<br>1.40<br>1.54<br>1.45<br>1.40<br>1.54<br>1.40<br>1.54<br>1.40<br>1.54<br>1.22<br>1.45<br>1.40<br>1.54<br>1.40<br>1.54<br>1.40<br>1.54<br>1.20<br>1.46<br>1.21<br>1.49<br>1.49<br>1.46<br>1.54<br>1.40<br>1.54<br>1.20<br>1.46<br>1.21<br>1.49<br>1.49<br>1.46<br>1.21<br>1.49<br>1.49<br>1.49<br>1.49<br>1.46<br>1.40<br>1.46<br>1.21<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.49<br>1.40<br>1.54<br>1.00<br>1.54<br>1.00<br>1.46<br>1.21<br>1.05<br>1.00<br>1.49<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09<br>1.09 | TEST DATE:<br>Base Area 'B'<br>Circumference 'C'<br>Volume soaked<br>V=(h0-h1)*B<br>m3<br>.14E-04<br>2.36E-04<br>1.57E-04<br>2.36E-04<br>1.57E-04<br>3.93E-04<br>3.93E-04<br>3.93E-04<br>3.93E-04<br>3.93E-04<br>3.93E-04<br>3.93E-04<br>3.93E-04<br>3.93E-04<br>4.71E-04<br>3.93E-04<br>4.71E-04<br>4.71E-04<br>4.71E-04<br>1.73E-03<br>1.26E-03<br>1.73E-03 | 15/07/2021 - 16/07/2021<br>0.008<br>0.314<br>Soakage surface area<br>A=(C*(h0+h1)/2)+B<br>m2<br>-<br>0.62<br>0.61<br>0.60<br>0.59<br>0.58<br>0.57<br>0.55<br>0.53<br>0.52<br>0.50<br>0.49<br>0.47<br>0.46<br>0.44<br>0.42<br>0.40<br>0.38<br>0.32<br>0.26<br>0.20<br>Considered average<br>Design rate | \$ m2<br>Soaka<br>SR=V/A/(t1-t0)<br>m3/m2/sec<br>5.1E-05<br>3.9E-05<br>2.6E-05<br>2.7E-05<br>9.7E-05<br>2.4E-05<br>2.5E-05<br>2.5E-05<br>3.1E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05      | ge Rate<br>SR*60*60*10<br>litres/m2/hc<br>-<br>183.2<br>139.9<br>94.5<br>143.6<br>97.0<br>348.1<br>85.7<br>88.2<br>90.9<br>112.9<br>77.7<br>79.7<br>102.7<br>102.7<br>102.7<br>102.7<br>102.7<br>105.6<br>90.6<br>59.5<br>74.7<br>78.6<br>328.4<br>58.9<br>105.6 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| t Hole Depth 'D'<br>undwater Level           me         Water Level           nin         m           0         0           .17         0.04           .33         0.08           .50         0.11           .67         0.13           .83         0.16           .00         0.35           .00         0.35           .00         0.46           .00         0.59           .00         0.59           .00         0.59           .00         0.59           .00         0.59           .00         0.59           .00         0.59           .00         0.59           .00         0.59           .00         0.59           .00         0.46           .00         0.59           .00         0.59           .00         0.85           .00         1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1         n         0         04         08         11         13         16         18         225         .3         35         40         46         50         54         55         666         74         79         91         13 | <b>=D-d</b><br><b>m</b><br>1.96<br>1.92<br>1.89<br>1.87<br>1.84<br>1.82<br>1.75<br>1.70<br>1.65<br>1.60<br>1.54<br>1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71<br>0.49                                  | Time<br>t0<br>sec<br>-<br>0<br>10<br>20<br>30<br>40<br>50<br>60<br>90<br>120<br>150<br>180<br>210<br>240<br>270<br>300<br>360<br>420<br>300<br>360<br>420<br>540<br>600<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90 | 2.00<br>ncountered<br>steps<br>t1<br>sec<br>-<br>10<br>20<br>30<br>40<br>50<br>60<br>90<br>120<br>150<br>180<br>120<br>150<br>180<br>210<br>240<br>270<br>360<br>420<br>480<br>540<br>600<br>900                                                                   | m<br>m<br>Depth<br>h0<br>m<br>-<br>1.96<br>1.92<br>1.89<br>1.87<br>1.84<br>1.89<br>1.87<br>1.84<br>1.82<br>1.75<br>1.70<br>1.65<br>1.60<br>1.54<br>1.50<br>1.54<br>1.50<br>1.46<br>1.54<br>1.50<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87 | h1<br>m<br>1.92<br>1.89<br>1.87<br>1.84<br>1.82<br>1.75<br>1.70<br>1.65<br>1.60<br>1.54<br>1.50<br>1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Circumference 'C'  Volume soaked V=(h0-h1)*B m3 3.14E-04 2.36E-04 1.57E-04 2.36E-04 1.57E-04 3.93E-04 3.93E-04 3.93E-04 3.93E-04 3.14E-04 3.14E-04 3.14E-04 3.14E-04 3.14E-04 3.14E-04 3.93E-04 4.71E-04 4.71E-04 4.71E-04 1.73E-03 1.26E-03                                                                                                                  | 0.314<br>Soakage surface area<br>A=(C*(h0+h1)/2)+B<br>m2<br>0.62<br>0.61<br>0.60<br>0.59<br>0.58<br>0.57<br>0.55<br>0.53<br>0.52<br>0.50<br>0.49<br>0.47<br>0.46<br>0.44<br>0.42<br>0.40<br>0.38<br>0.36<br>0.32<br>0.26<br>0.20                                                                       | \$ m2<br>Soaka<br>SR=V/A/(t1-t0)<br>m3/m2/sec<br>5.1E-05<br>3.9E-05<br>2.6E-05<br>2.7E-05<br>9.7E-05<br>2.4E-05<br>2.5E-05<br>2.5E-05<br>3.1E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05      | SR*60*60*10<br>litres/m2/h0<br>                                                                                                                                                                                                                                  |
| undwater Level           T         d           nin         m           0         0           117         0.04           33         0.08           50         0.11           67         0.13           83         0.16           00         0.18           50         0.25           .00         0.3           .50         0.25           .00         0.40           .50         0.46           .00         0.50           .50         0.46           .00         0.50           .50         0.40           .50         0.40           .50         0.46           .00         0.59           .00         0.59           .00         0.85           .00         0.91           .00         1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1         n         0         04         08         11         13         16         18         225         .3         35         40         46         50         54         55         666         74         79         91         13 | <b>=D-d</b><br><b>m</b><br>1.96<br>1.92<br>1.89<br>1.87<br>1.84<br>1.82<br>1.75<br>1.70<br>1.65<br>1.60<br>1.54<br>1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71<br>0.49                                  | Time<br>t0<br>sec<br>-<br>0<br>10<br>20<br>30<br>40<br>50<br>60<br>90<br>120<br>150<br>180<br>210<br>240<br>270<br>300<br>360<br>420<br>300<br>360<br>420<br>540<br>600<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90 | ncountered<br>steps<br>t1<br>sec<br>-<br>10<br>20<br>30<br>40<br>50<br>60<br>90<br>120<br>150<br>180<br>210<br>240<br>270<br>360<br>420<br>480<br>540<br>600<br>90<br>90<br>90<br>120<br>150<br>150<br>150<br>150<br>150<br>150<br>150<br>15                       | m<br>Depth<br>h0<br>m<br>-<br>1.96<br>1.92<br>1.89<br>1.87<br>1.84<br>1.82<br>1.75<br>1.70<br>1.65<br>1.60<br>1.54<br>1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87                                                              | h1<br>m<br>1.92<br>1.89<br>1.87<br>1.84<br>1.82<br>1.75<br>1.70<br>1.65<br>1.60<br>1.54<br>1.50<br>1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Volume soaked<br>V=(h0-h1)*B<br>m3<br>3.14E-04<br>2.36E-04<br>1.57E-04<br>2.36E-04<br>1.57E-04<br>3.93E-04<br>3.93E-04<br>3.93E-04<br>3.93E-04<br>3.14E-04<br>3.14E-04<br>3.14E-04<br>3.14E-04<br>3.93E-04<br>6.28E-04<br>3.93E-04<br>4.71E-04<br>1.73E-03<br>1.26E-03                                                                                        | Soakage surface area<br>A=(C*(h0+h1)/2)+B<br>m2<br>-<br>0.62<br>0.61<br>0.60<br>0.59<br>0.58<br>0.57<br>0.55<br>0.53<br>0.52<br>0.50<br>0.49<br>0.47<br>0.46<br>0.44<br>0.42<br>0.40<br>0.38<br>0.36<br>0.32<br>0.20<br>Considered average                                                             | Soaka<br>SR=V/A/(11-10)<br>m3/m2/sec<br>-<br>-<br>5.1E-05<br>3.9E-05<br>2.6E-05<br>4.0E-05<br>2.7E-05<br>2.7E-05<br>2.4E-05<br>2.5E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SR*60*60*10<br>litres/m2/h0<br>                                                                                                                                                                                                                                  |
| ime         Water Leve           T         d           nin         m           0         0           .17         0.04           .33         0.08           .50         0.11           .67         0.13           .83         0.16           .00         0.18           .50         0.25           .00         0.35           .00         0.40           .50         0.46           .00         0.50           .50         0.46           .00         0.59           .00         0.59           .00         0.66           .00         0.79           .00         0.85           .00         1.13           .00         1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1         n         0         04         08         11         13         16         18         225         .3         35         40         46         50         54         55         666         74         79         91         13 | <b>=D-d</b><br><b>m</b><br>1.96<br>1.92<br>1.89<br>1.87<br>1.84<br>1.82<br>1.75<br>1.70<br>1.65<br>1.60<br>1.54<br>1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71<br>0.49                                  | Time<br>t0<br>sec<br>-<br>0<br>10<br>20<br>30<br>40<br>50<br>60<br>90<br>120<br>150<br>180<br>210<br>240<br>270<br>300<br>360<br>420<br>300<br>360<br>420<br>540<br>600<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90 | steps<br>t1<br>sec<br>-<br>10<br>20<br>30<br>40<br>50<br>60<br>90<br>120<br>150<br>150<br>150<br>210<br>240<br>270<br>360<br>420<br>480<br>540<br>600<br>900<br>120<br>150<br>150<br>150<br>150<br>150<br>150<br>150<br>15                                         | Depth<br>h0<br>m<br>-<br>1.96<br>1.92<br>1.89<br>1.87<br>1.84<br>1.82<br>1.75<br>1.70<br>1.65<br>1.60<br>1.54<br>1.50<br>1.46<br>1.51<br>1.50<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87                                                   | h1<br>m<br>1.92<br>1.89<br>1.87<br>1.84<br>1.82<br>1.75<br>1.70<br>1.65<br>1.60<br>1.54<br>1.50<br>1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V=(h0-h1)*B<br>m3<br>3.14E-04<br>2.36E-04<br>1.57E-04<br>2.36E-04<br>1.57E-04<br>5.50E-04<br>3.93E-04<br>3.93E-04<br>3.93E-04<br>4.71E-04<br>3.14E-04<br>3.14E-04<br>3.14E-04<br>3.93E-04<br>6.28E-04<br>3.93E-04<br>4.71E-04<br>4.71E-04<br>4.71E-04<br>1.73E-03<br>1.26E-03                                                                                 | A=(C*(h0+h1)/2)+B<br>m2<br>-<br>0.62<br>0.61<br>0.59<br>0.58<br>0.57<br>0.55<br>0.53<br>0.52<br>0.50<br>0.49<br>0.47<br>0.46<br>0.44<br>0.44<br>0.42<br>0.40<br>0.38<br>0.36<br>0.32<br>0.26<br>0.20                                                                                                   | SR=V/A/(t1-t0)<br>m3/m2/sec<br>5.1E-05<br>3.9E-05<br>2.6E-05<br>2.7E-05<br>9.7E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>9.1E-05<br>2.2E-05<br>9.1E-05<br>2.2E-05<br>9.1E-05<br>2.2E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SR*60*60*10<br>litres/m2/hc<br>-<br>183.2<br>139.9<br>94.5<br>143.6<br>97.0<br>348.1<br>85.7<br>88.2<br>90.9<br>112.9<br>77.7<br>79.7<br>79.7<br>79.7<br>79.7<br>79.7<br>79.7<br>7                                                                               |
| T     d       nin     m       0     0       .17     0.04       .33     0.08       .50     0.11       .67     0.13       .83     0.16       .00     0.18       .50     0.25       .00     0.35       .00     0.46       .00     0.50       .50     0.54       .00     0.74       .00     0.91       5.00     1.13       .00     1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1         n         0         04         08         11         13         16         18         225         .3         35         40         46         50         54         55         666         74         79         91         13 | <b>=D-d</b><br><b>m</b><br>1.96<br>1.92<br>1.89<br>1.87<br>1.84<br>1.82<br>1.75<br>1.70<br>1.65<br>1.60<br>1.54<br>1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71<br>0.49                                  | t0<br>sec<br>-<br>0<br>10<br>20<br>30<br>40<br>50<br>60<br>90<br>120<br>150<br>150<br>150<br>150<br>150<br>210<br>240<br>360<br>420<br>360<br>420<br>360<br>420<br>360<br>900                                                 | t1<br>sec<br>-<br>20<br>30<br>40<br>50<br>60<br>90<br>120<br>150<br>180<br>210<br>240<br>270<br>300<br>420<br>480<br>540<br>600<br>900                                                                                                                             | h0<br>m<br>1.96<br>1.92<br>1.89<br>1.87<br>1.84<br>1.82<br>1.75<br>1.70<br>1.65<br>1.60<br>1.54<br>1.50<br>1.54<br>1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87                                                                 | h1<br>m<br>1.92<br>1.89<br>1.87<br>1.84<br>1.82<br>1.75<br>1.70<br>1.65<br>1.60<br>1.54<br>1.50<br>1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V=(h0-h1)*B<br>m3<br>3.14E-04<br>2.36E-04<br>1.57E-04<br>2.36E-04<br>1.57E-04<br>5.50E-04<br>3.93E-04<br>3.93E-04<br>3.93E-04<br>4.71E-04<br>3.14E-04<br>3.14E-04<br>3.14E-04<br>3.93E-04<br>6.28E-04<br>3.93E-04<br>4.71E-04<br>4.71E-04<br>4.71E-04<br>1.73E-03<br>1.26E-03                                                                                 | A=(C*(h0+h1)/2)+B<br>m2<br>-<br>0.62<br>0.61<br>0.59<br>0.58<br>0.57<br>0.55<br>0.53<br>0.52<br>0.50<br>0.49<br>0.47<br>0.46<br>0.44<br>0.44<br>0.42<br>0.40<br>0.38<br>0.36<br>0.32<br>0.26<br>0.20                                                                                                   | SR=V/A/(t1-t0)<br>m3/m2/sec<br>5.1E-05<br>3.9E-05<br>2.6E-05<br>2.7E-05<br>9.7E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>9.1E-05<br>2.2E-05<br>9.1E-05<br>2.2E-05<br>9.1E-05<br>2.2E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SR*60*60*10<br>litres/m2/hc<br>-<br>183.2<br>139.9<br>94.5<br>143.6<br>97.0<br>348.1<br>85.7<br>88.2<br>90.9<br>112.9<br>77.7<br>79.7<br>79.7<br>79.7<br>79.7<br>79.7<br>79.7<br>7                                                                               |
| T     d       nin     m       0     0       .17     0.04       .33     0.08       .50     0.11       .67     0.13       .83     0.16       .00     0.18       .50     0.25       .00     0.35       .00     0.46       .00     0.50       .50     0.54       .00     0.74       .00     0.91       5.00     1.13       .00     1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1         n         0         04         08         11         13         16         18         225         .3         35         40         46         50         54         55         666         74         79         91         13 | <b>=D-d</b><br><b>m</b><br>1.96<br>1.92<br>1.89<br>1.87<br>1.84<br>1.82<br>1.75<br>1.70<br>1.65<br>1.60<br>1.54<br>1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71<br>0.49                                  | t0<br>sec<br>-<br>0<br>10<br>20<br>30<br>40<br>50<br>60<br>90<br>120<br>150<br>150<br>150<br>150<br>150<br>210<br>240<br>360<br>420<br>360<br>420<br>360<br>420<br>360<br>900                                                 | t1<br>sec<br>-<br>20<br>30<br>40<br>50<br>60<br>90<br>120<br>150<br>180<br>210<br>240<br>270<br>300<br>420<br>480<br>540<br>600<br>900                                                                                                                             | h0<br>m<br>1.96<br>1.92<br>1.89<br>1.87<br>1.84<br>1.82<br>1.75<br>1.70<br>1.65<br>1.60<br>1.54<br>1.50<br>1.54<br>1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87                                                                 | h1<br>m<br>1.92<br>1.89<br>1.87<br>1.84<br>1.82<br>1.75<br>1.70<br>1.65<br>1.60<br>1.54<br>1.50<br>1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V=(h0-h1)*B<br>m3<br>3.14E-04<br>2.36E-04<br>1.57E-04<br>2.36E-04<br>1.57E-04<br>5.50E-04<br>3.93E-04<br>3.93E-04<br>3.93E-04<br>4.71E-04<br>3.14E-04<br>3.14E-04<br>3.14E-04<br>3.93E-04<br>6.28E-04<br>3.93E-04<br>4.71E-04<br>4.71E-04<br>4.71E-04<br>1.73E-03<br>1.26E-03                                                                                 | A=(C*(h0+h1)/2)+B<br>m2<br>-<br>0.62<br>0.61<br>0.59<br>0.58<br>0.57<br>0.55<br>0.53<br>0.52<br>0.50<br>0.49<br>0.47<br>0.46<br>0.44<br>0.44<br>0.42<br>0.40<br>0.38<br>0.36<br>0.32<br>0.26<br>0.20                                                                                                   | SR=V/A/(t1-t0)<br>m3/m2/sec<br>5.1E-05<br>3.9E-05<br>2.6E-05<br>2.7E-05<br>9.7E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>9.1E-05<br>2.2E-05<br>9.1E-05<br>2.2E-05<br>9.1E-05<br>2.2E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SR*60*60*10<br>litres/m2/hc<br>-<br>183.2<br>139.9<br>94.5<br>143.6<br>97.0<br>348.1<br>85.7<br>88.2<br>90.9<br>112.9<br>77.7<br>79.7<br>79.7<br>79.7<br>79.7<br>79.7<br>79.7<br>7                                                                               |
| nin m<br>0 0<br>117 0.04<br>33 0.08<br>50 0.11<br>67 0.13<br>83 0.16<br>00 0.33<br>50 0.35<br>00 0.35<br>00 0.46<br>.00 0.50<br>.50 0.54<br>.00 0.59<br>.00 0.64<br>.00 0.59<br>.00 0.64<br>.00 0.59<br>.00 0.64<br>.00 0.59<br>.00 0.85<br>.00 0.74<br>.00 0.85<br>.00 0.42<br>.00 0.59<br>.00 0.40<br>.00 0.59<br>.00 0.45<br>.00 0.40<br>.00 0.59<br>.00 0.40<br>.00 0.59<br>.00 0.40<br>.00 0.59<br>.00 0.45<br>.00 0.45<br>.00 0.59<br>.00 0.45<br>.00 0.59<br>.00 0.45<br>.00 0.59<br>.00 0.45<br>.00 0.59<br>.00 0.45<br>.00 0.59<br>.00 0.59<br>.00 0.45<br>.00 0.59<br>.00 0.45<br>.00 0.59<br>.00 0.45<br>.00 0.45<br>.00 0.59<br>.00 0.45<br>.00 0.59<br>.00 0.45<br>.00 0.59<br>.00 0.45<br>.00 0.45<br>.00 0.59<br>.00 0.45<br>.00 0.59<br>.00 0.45<br>.00 0.45<br>.00 0.59<br>.00 0.45<br>.00 0.59<br>.00 0.59<br>.00 0.45<br>.00 0.59<br>.00 0.45<br>.00 0.59<br>.00 0.45<br>.00 0.59<br>.00 0.59<br>.00 0.45<br>.00 0.59<br>.00 0.45<br>.00 0.59<br>.00 0.45<br>.00 0.59<br>.00 0.45<br>.00 0.59<br>.00 0.45<br>.00 0.59<br>.00 0.59<br>.00 0.45<br>.00 0.59<br>.00 0.91<br>.00 0.91<br>.00 0.59<br>.00 0.91<br>.00 0.59<br>.00 0.91<br>.00 0.91<br>.00 0.59<br>.00 0.91<br>.00 0.91<br>.00 0.91<br>.00 0.59<br>.00 0.91<br>.00 0.59<br>.00 0.91<br>.00 0.59<br>.00 0.91<br>.00 0.59<br>.00 0.91<br>.00 0.59<br>.00 0.91<br>.00 0.59<br>.00 0.59<br>.00 0.91<br>.00 0.59<br>.00 0.91<br>.00 0.59<br>.00 0.59<br>.00 0.91<br>.00 0.59<br>.00 0.91<br>.00 0.59<br>.00 0.59<br>.00 0.91<br>.00 0.59<br>.00 0.59<br>.00 0.91<br>.00 0.59<br>.00 0.59<br>.0 | n<br>0<br>04<br>08<br>111<br>13<br>16<br>18<br>225<br>33<br>35<br>40<br>46<br>55<br>54<br>46<br>55<br>55<br>66<br>66<br>74<br>79<br>85<br>91<br>13                                                                                       | <b>m</b><br>1.96<br>1.92<br>1.89<br>1.87<br>1.84<br>1.82<br>1.75<br>1.70<br>1.65<br>1.60<br>1.54<br>1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71<br>0.49                                                 | sec<br>0<br>10<br>20<br>30<br>40<br>50<br>60<br>90<br>120<br>150<br>180<br>210<br>240<br>270<br>300<br>360<br>420<br>480<br>540<br>600<br>900                                                                                 | sec<br>10<br>20<br>30<br>40<br>50<br>60<br>90<br>120<br>150<br>180<br>210<br>240<br>270<br>360<br>420<br>480<br>540<br>600<br>900                                                                                                                                  | <i>m</i><br>1.96<br>1.89<br>1.87<br>1.84<br>1.82<br>1.75<br>1.70<br>1.65<br>1.60<br>1.54<br>1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87                                                                                        | <i>m</i><br>1.92<br>1.89<br>1.87<br>1.84<br>1.82<br>1.75<br>1.60<br>1.65<br>1.60<br>1.50<br>1.46<br>1.41<br>1.34<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m3<br>3.14E-04<br>2.36E-04<br>1.57E-04<br>2.36E-04<br>1.57E-04<br>5.50E-04<br>3.93E-04<br>3.93E-04<br>3.93E-04<br>3.14E-04<br>3.14E-04<br>3.14E-04<br>3.14E-04<br>3.14E-04<br>3.93E-04<br>6.28E-04<br>3.93E-04<br>4.71E-04<br>4.71E-04<br>1.73E-03<br>1.26E-03                                                                                                | m2<br>0.62<br>0.61<br>0.60<br>0.59<br>0.58<br>0.57<br>0.55<br>0.53<br>0.52<br>0.50<br>0.49<br>0.47<br>0.46<br>0.44<br>0.42<br>0.40<br>0.38<br>0.36<br>0.32<br>0.20<br>Considered average                                                                                                               | m3/m2/sec<br>5.1E-05<br>3.9E-05<br>2.6E-05<br>4.0E-05<br>2.7E-05<br>2.7E-05<br>2.5E-05<br>2.5E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.5E-05<br>1.7E-05<br>2.1E-05<br>2.2E-05<br>9.1E-05<br>2.2E-05<br>9.1E-05<br>2.2E-05<br>9.1E-05<br>2.2E-05<br>9.1E-05<br>2.2E-05<br>9.1E-05<br>2.2E-05<br>9.1E-05<br>2.2E-05<br>3.1E-05<br>2.2E-05<br>3.1E-05<br>2.2E-05<br>3.1E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>3.1E-05<br>2.2E-05<br>3.1E-05<br>2.2E-05<br>3.1E-05<br>2.2E-05<br>3.1E-05<br>2.2E-05<br>3.1E-05<br>2.2E-05<br>3.1E-05<br>2.2E-05<br>3.1E-05<br>2.2E-05<br>3.1E-05<br>2.2E-05<br>3.1E-05<br>2.2E-05<br>3.1E-05<br>2.2E-05<br>3.1E-05<br>2.2E-05<br>3.1E-05<br>2.2E-05<br>3.1E-05<br>2.2E-05<br>3.1E-05<br>2.2E-05<br>3.1E-05<br>2.2E-05<br>3.1E-05<br>2.2E-05<br>3.1E-05<br>2.2E-05<br>3.1E-05<br>2.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3.2E-05<br>3                                                                                                                                                                                                                                                                                                                        | litres/m2/hc<br>183.2<br>139.9<br>94.5<br>143.6<br>97.0<br>348.1<br>85.7<br>88.2<br>90.9<br>112.9<br>77.7<br>79.7<br>102.7<br>102.7<br>102.7<br>150.0<br>90.6<br>59.5<br>74.7<br>78.6<br>328.4<br>58.9<br>105.6<br>123.4                                         |
| 17 0.04<br>33 0.08<br>50 0.11<br>67 0.13<br>83 0.16<br>00 0.18<br>50 0.25<br>00 0.35<br>50 0.40<br>50 0.40<br>50 0.50<br>0.50 0.54<br>00 0.59<br>00 0.59<br>00 0.66<br>00 0.79<br>00 0.85<br>0.00 0.79<br>00 0.85<br>0.00 0.113<br>0.00 1.29<br>e: Tests struck out w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 04<br>08<br>11<br>13<br>16<br>18<br>25<br>33<br>35<br>40<br>46<br>50<br>54<br>59<br>66<br>66<br>74<br>79<br>85<br>91<br>13                                                                                                               | 1.92<br>1.89<br>1.87<br>1.84<br>1.82<br>1.75<br>1.70<br>1.65<br>1.60<br>1.54<br>1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71<br>0.49                                                                     | 0<br>10<br>20<br>30<br>40<br>50<br>60<br>90<br>120<br>150<br>180<br>210<br>240<br>270<br>300<br>360<br>420<br>480<br>540<br>600<br>900                                                                                        | 10<br>20<br>30<br>40<br>50<br>60<br>90<br>120<br>150<br>180<br>210<br>240<br>270<br>300<br>360<br>420<br>480<br>540<br>600<br>900                                                                                                                                  | $\begin{array}{c} 1.96\\ 1.92\\ 1.89\\ 1.87\\ 1.84\\ 1.82\\ 1.75\\ 1.70\\ 1.65\\ 1.60\\ 1.54\\ 1.50\\ 1.46\\ 1.41\\ 1.34\\ 1.26\\ 1.21\\ 1.15\\ 1.09\\ 0.87 \end{array}$                                                                                | 1.92<br>1.89<br>1.87<br>1.84<br>1.82<br>1.75<br>1.70<br>1.65<br>1.60<br>1.54<br>1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.14E-04<br>2.36E-04<br>1.57E-04<br>2.36E-04<br>1.57E-04<br>3.93E-04<br>3.93E-04<br>3.93E-04<br>3.93E-04<br>3.14E-04<br>3.14E-04<br>3.14E-04<br>3.93E-04<br>5.50E-04<br>6.28E-04<br>3.93E-04<br>4.71E-04<br>4.71E-04<br>4.71E-04<br>1.73E-03<br>1.26E-03                                                                                                      | 0.62<br>0.61<br>0.60<br>0.59<br>0.58<br>0.57<br>0.55<br>0.53<br>0.52<br>0.50<br>0.49<br>0.47<br>0.46<br>0.44<br>0.42<br>0.40<br>0.38<br>0.36<br>0.32<br>0.26<br>0.20                                                                                                                                   | 5.1E-05<br>3.9E-05<br>2.6E-05<br>4.0E-05<br>2.7E-05<br>9.7E-05<br>2.5E-05<br>2.5E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2                                                                                                                                                                                                                                                                                                                        | 183.2<br>139.9<br>94.5<br>143.6<br>97.0<br>348.1<br>85.7<br>88.2<br>90.9<br>112.9<br>77.7<br>102.7<br>150.0<br>90.6<br>59.5<br>74.7<br>78.6<br>328.4<br>58.9<br>105.6                                                                                            |
| .33 0.08<br>.50 0.11<br>.67 0.13<br>.83 0.16<br>.50 0.25<br>.00 0.3<br>.50 0.35<br>.00 0.40<br>.50 0.46<br>.00 0.50<br>.50 0.54<br>.00 0.59<br>.00 0.66<br>.00 0.74<br>.00 0.79<br>.00 0.85<br>.00 0.91<br>5.00 1.13<br>.00 1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 08<br>11<br>13<br>16<br>18<br>25<br>33<br>35<br>40<br>46<br>50<br>54<br>55<br>55<br>66<br>66<br>74<br>79<br>85<br>91<br>13                                                                                                               | 1.89<br>1.87<br>1.84<br>1.82<br>1.75<br>1.70<br>1.65<br>1.60<br>1.54<br>1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71<br>0.49                                                                             | 10<br>20<br>30<br>40<br>50<br>60<br>90<br>120<br>150<br>180<br>210<br>240<br>360<br>420<br>360<br>420<br>540<br>600<br>900                                                                                                    | 20<br>30<br>40<br>50<br>60<br>90<br>120<br>150<br>180<br>210<br>240<br>240<br>270<br>300<br>360<br>420<br>480<br>540<br>600<br>900                                                                                                                                 | $\begin{array}{c} 1.92\\ 1.89\\ 1.87\\ 1.84\\ 1.82\\ 1.75\\ 1.70\\ 1.65\\ 1.60\\ 1.54\\ 1.50\\ 1.46\\ 1.41\\ 1.34\\ 1.26\\ 1.21\\ 1.15\\ 1.09\\ 0.87\end{array}$                                                                                        | 1.89<br>1.87<br>1.84<br>1.75<br>1.70<br>1.65<br>1.60<br>1.54<br>1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.36E-04<br>1.57E-04<br>2.36E-04<br>1.57E-04<br>3.93E-04<br>3.93E-04<br>3.93E-04<br>3.14E-04<br>3.14E-04<br>3.14E-04<br>3.14E-04<br>3.93E-04<br>6.28E-04<br>3.93E-04<br>4.71E-04<br>4.71E-04<br>1.73E-03<br>1.26E-03                                                                                                                                          | 0.61<br>0.60<br>0.59<br>0.58<br>0.57<br>0.55<br>0.53<br>0.52<br>0.50<br>0.49<br>0.47<br>0.46<br>0.44<br>0.42<br>0.40<br>0.38<br>0.36<br>0.32<br>0.26<br>0.20                                                                                                                                           | 3.9E-05<br>2.6E-05<br>2.7E-05<br>9.7E-05<br>2.4E-05<br>2.5E-05<br>2.5E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.1E-05<br>2.1E-05<br>2.2E-05<br>9.1E-05<br>2.2E-05<br>9.1E-05<br>2.2E-05<br>9.1E-05<br>2.9E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 139.9<br>94.5<br>143.6<br>97.0<br>348.1<br>85.7<br>88.2<br>90.9<br>112.9<br>77.7<br>79.7<br>102.7<br>150.0<br>90.6<br>59.5<br>74.7<br>78.6<br>328.4<br>58.9<br>105.6                                                                                             |
| .50       0.11         .67       0.13         .83       0.16         .00       0.18         .50       0.25         .00       0.33         .50       0.35         .00       0.46         .00       0.50         .50       0.54         .00       0.59         .00       0.74         .00       0.79         .00       0.85         .00       1.13         .00       1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11<br>13<br>16<br>18<br>225<br>3<br>35<br>40<br>46<br>50<br>54<br>55<br>55<br>66<br>66<br>74<br>79<br>85<br>91<br>13                                                                                                                     | 1.87<br>1.84<br>1.82<br>1.75<br>1.70<br>1.65<br>1.60<br>1.54<br>1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71<br>0.49                                                                                     | 20<br>30<br>40<br>50<br>60<br>90<br>120<br>150<br>180<br>210<br>240<br>270<br>300<br>360<br>420<br>480<br>540<br>600<br>900                                                                                                   | 30<br>40<br>50<br>90<br>120<br>150<br>180<br>210<br>240<br>270<br>300<br>420<br>480<br>540<br>600<br>900                                                                                                                                                           | $\begin{array}{c} 1.89\\ 1.87\\ 1.84\\ 1.82\\ 1.75\\ 1.70\\ 1.65\\ 1.60\\ 1.54\\ 1.50\\ 1.46\\ 1.41\\ 1.34\\ 1.26\\ 1.21\\ 1.15\\ 1.09\\ 0.87 \end{array}$                                                                                              | 1.87<br>1.84<br>1.82<br>1.75<br>1.70<br>1.65<br>1.60<br>1.50<br>1.60<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.57E-04<br>2.36E-04<br>1.57E-04<br>5.50E-04<br>3.93E-04<br>3.93E-04<br>3.93E-04<br>4.71E-04<br>3.14E-04<br>3.14E-04<br>3.14E-04<br>3.14E-04<br>5.50E-04<br>6.28E-04<br>4.71E-04<br>4.71E-04<br>1.73E-03<br>1.26E-03                                                                                                                                          | 0.60<br>0.59<br>0.58<br>0.57<br>0.55<br>0.53<br>0.52<br>0.50<br>0.49<br>0.47<br>0.46<br>0.44<br>0.42<br>0.40<br>0.38<br>0.36<br>0.32<br>0.26<br>0.20                                                                                                                                                   | 2.6E-05<br>4.0E-05<br>9.7E-05<br>9.7E-05<br>2.4E-05<br>2.5E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 94.5<br>143.6<br>97.0<br>348.1<br>85.7<br>88.2<br>90.9<br>112.9<br>77.7<br>79.7<br>102.7<br>150.0<br>90.6<br>59.5<br>74.7<br>78.6<br>328.4<br>58.9<br>105.6                                                                                                      |
| .67 0.13<br>.83 0.16<br>.00 0.18<br>.50 0.25<br>.00 0.3<br>.50 0.40<br>.50 0.46<br>.00 0.50<br>.50 0.54<br>.00 0.59<br>.00 0.66<br>.00 0.74<br>.00 0.79<br>.00 0.85<br>.00 0.85<br>.00 0.91<br>.00 0.79<br>.00 0.85<br>.00 0.40<br>.00 0.59<br>.00 0.59<br>.00 0.79<br>.00 0.79<br>.00 0.45<br>.00 0.79<br>.00 0.79<br>.00 0.45<br>.00 0.45<br>.00 0.59<br>.00 0.45<br>.00 0.59<br>.00 0.45<br>.00 0.59<br>.00 0.45<br>.00 0.59<br>.00 0.45<br>.00 0.59<br>.00 0.45<br>.00 0.59<br>.00 0.45<br>.00 0.59<br>.00 0.45<br>.00 0.59<br>.00 0.59<br>.00 0.45<br>.00 0.59<br>.00 0.91<br>.00 0.59<br>.00 0.91<br>.00 0.91<br>.00 0.59<br>.00 0.91<br>.00 0.91<br>.00 0.91<br>.00 0.59<br>.00 0.91<br>.00 0.9     | 13<br>16<br>18<br>25<br>3<br>3<br>5<br>40<br>46<br>55<br>55<br>56<br>66<br>66<br>74<br>79<br>85<br>91<br>13                                                                                                                              | 1.84<br>1.82<br>1.75<br>1.70<br>1.65<br>1.60<br>1.54<br>1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71<br>0.49                                                                                             | 30<br>40<br>50<br>60<br>90<br>120<br>150<br>210<br>240<br>270<br>300<br>360<br>420<br>480<br>540<br>600<br>900                                                                                                                | 40<br>50<br>90<br>120<br>150<br>210<br>240<br>270<br>300<br>420<br>480<br>540<br>600<br>900                                                                                                                                                                        | 1.87<br>1.84<br>1.82<br>1.75<br>1.70<br>1.65<br>1.60<br>1.54<br>1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87                                                                                                                    | 1.84<br>1.82<br>1.75<br>1.70<br>1.65<br>1.60<br>1.54<br>1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.36E-04<br>1.57E-04<br>5.50E-04<br>3.93E-04<br>3.93E-04<br>3.93E-04<br>4.71E-04<br>3.14E-04<br>3.14E-04<br>3.93E-04<br>5.50E-04<br>6.28E-04<br>3.93E-04<br>4.71E-04<br>4.71E-04<br>1.73E-03<br>1.26E-03                                                                                                                                                      | 0.59<br>0.58<br>0.57<br>0.55<br>0.53<br>0.52<br>0.50<br>0.49<br>0.47<br>0.46<br>0.44<br>0.42<br>0.40<br>0.38<br>0.36<br>0.32<br>0.26<br>0.20                                                                                                                                                           | 4.0E-05<br>2.7E-05<br>2.4E-05<br>2.5E-05<br>2.5E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-0 | 143.6<br>97.0<br>348.1<br>85.7<br>88.2<br>90.9<br>112.9<br>77.7<br>79.7<br>102.7<br>150.0<br>90.6<br>59.5<br>74.7<br>78.6<br>328.4<br>58.9<br>105.6                                                                                                              |
| .83 0.16<br>.00 0.18<br>.50 0.25<br>.00 0.3<br>.50 0.35<br>.00 0.40<br>.50 0.54<br>.00 0.59<br>.00 0.59<br>.00 0.59<br>.00 0.66<br>.00 0.74<br>.00 0.79<br>.00 0.85<br>0.00 0.79<br>.00 0.81<br>0.00 0.91<br>.00 0.113<br>0.00 1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16<br>18<br>25<br>33<br>35<br>40<br>46<br>50<br>55<br>59<br>66<br>66<br>74<br>79<br>85<br>91<br>13                                                                                                                                       | 1.82<br>1.75<br>1.70<br>1.65<br>1.60<br>1.54<br>1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71<br>0.49                                                                                                     | 40<br>50<br>60<br>90<br>120<br>150<br>180<br>210<br>240<br>270<br>300<br>360<br>420<br>480<br>540<br>600<br>900                                                                                                               | 50<br>60<br>90<br>120<br>150<br>210<br>240<br>270<br>300<br>360<br>420<br>480<br>540<br>600<br>900                                                                                                                                                                 | $\begin{array}{c} 1.84\\ 1.82\\ 1.75\\ 1.70\\ 1.65\\ 1.60\\ 1.54\\ 1.50\\ 1.46\\ 1.46\\ 1.41\\ 1.34\\ 1.26\\ 1.21\\ 1.15\\ 1.09\\ 0.87 \end{array}$                                                                                                     | 1.82<br>1.75<br>1.70<br>1.65<br>1.60<br>1.54<br>1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.57E-04<br>5.50E-04<br>3.93E-04<br>3.93E-04<br>4.71E-04<br>3.14E-04<br>3.14E-04<br>3.93E-04<br>5.50E-04<br>6.28E-04<br>3.93E-04<br>4.71E-04<br>4.71E-04<br>1.73E-03<br>1.26E-03                                                                                                                                                                              | 0.58<br>0.57<br>0.55<br>0.53<br>0.52<br>0.50<br>0.49<br>0.47<br>0.46<br>0.44<br>0.42<br>0.40<br>0.38<br>0.36<br>0.32<br>0.26<br>0.20                                                                                                                                                                   | 2.7E-05<br>9.7E-05<br>2.4E-05<br>2.5E-05<br>3.1E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.5E-05<br>1.7E-05<br>2.1E-05<br>2.2E-05<br>9.1E-05<br>2.2E-05<br>9.1E-05<br>2.2E-05<br>9.1E-05<br>2.9E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 97.0<br>348.1<br>85.7<br>88.2<br>90.9<br>112.9<br>77.7<br>102.7<br>150.0<br>90.6<br>59.5<br>74.7<br>78.6<br>328.4<br>58.9<br>105.6                                                                                                                               |
| .00 0.18<br>.50 0.25<br>.00 0.3<br>.50 0.35<br>.00 0.40<br>.50 0.46<br>.00 0.50<br>.50 0.54<br>.00 0.66<br>.00 0.74<br>.00 0.79<br>.00 0.85<br>.00 0.91<br>5.00 1.13<br>.00 1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18<br>25<br>33<br>340<br>46<br>50<br>54<br>59<br>66<br>74<br>79<br>85<br>91<br>13                                                                                                                                                        | 1.75<br>1.70<br>1.65<br>1.60<br>1.54<br>1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71<br>0.49                                                                                                             | 50<br>60<br>90<br>120<br>150<br>180<br>210<br>240<br>270<br>300<br>360<br>420<br>480<br>540<br>600<br>900                                                                                                                     | 60<br>90<br>120<br>180<br>210<br>240<br>270<br>300<br>360<br>420<br>480<br>540<br>600<br>900                                                                                                                                                                       | $\begin{array}{c} 1.82\\ 1.75\\ 1.70\\ 1.65\\ 1.60\\ 1.54\\ 1.50\\ 1.46\\ 1.41\\ 1.34\\ 1.26\\ 1.21\\ 1.15\\ 1.09\\ 0.87\end{array}$                                                                                                                    | 1.75<br>1.70<br>1.65<br>1.60<br>1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.50E-04<br>3.93E-04<br>3.93E-04<br>4.71E-04<br>3.14E-04<br>3.14E-04<br>3.93E-04<br>5.50E-04<br>6.28E-04<br>3.93E-04<br>4.71E-04<br>4.71E-04<br>1.73E-03<br>1.26E-03                                                                                                                                                                                          | 0.57<br>0.55<br>0.53<br>0.52<br>0.50<br>0.49<br>0.47<br>0.46<br>0.44<br>0.42<br>0.40<br>0.38<br>0.36<br>0.32<br>0.26<br>0.20                                                                                                                                                                           | 9.7E-05<br>2.4E-05<br>2.5E-05<br>3.1E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.5E-05<br>1.7E-05<br>2.2E-05<br>9.1E-05<br>2.2E-05<br>9.1E-05<br>2.2E-05<br>9.1E-05<br>2.9E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 348.1<br>85.7<br>88.2<br>90.9<br>112.9<br>77.7<br>102.7<br>150.0<br>90.6<br>59.5<br>74.7<br>78.6<br>328.4<br>58.9<br>105.6                                                                                                                                       |
| .50 0.25<br>.00 0.3<br>.50 0.35<br>.00 0.40<br>.50 0.46<br>.00 0.50<br>.50 0.54<br>.00 0.59<br>.00 0.66<br>.00 0.74<br>.00 0.79<br>.00 0.85<br>.00 0.71<br>.00 0.91<br>.00 0.91<br>.00 0.91<br>.00 1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 25<br>3<br>35<br>40<br>46<br>50<br>54<br>55<br>66<br>66<br>74<br>79<br>85<br>91<br>13                                                                                                                                                    | 1.70<br>1.65<br>1.60<br>1.54<br>1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71<br>0.49                                                                                                                     | 60<br>90<br>120<br>150<br>150<br>210<br>240<br>270<br>300<br>360<br>420<br>480<br>540<br>600<br>900                                                                                                                           | 90<br>120<br>150<br>210<br>240<br>270<br>300<br>360<br>420<br>480<br>540<br>600<br>900                                                                                                                                                                             | $\begin{array}{c} 1.75\\ 1.70\\ 1.65\\ 1.60\\ 1.54\\ 1.50\\ 1.46\\ 1.41\\ 1.34\\ 1.26\\ 1.21\\ 1.15\\ 1.09\\ 0.87\end{array}$                                                                                                                           | $\begin{array}{c} 1.70\\ 1.65\\ 1.60\\ 1.54\\ 1.50\\ 1.46\\ 1.41\\ 1.34\\ 1.26\\ 1.21\\ 1.15\\ 1.09\\ 0.87\\ 0.71\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.93E-04<br>3.93E-04<br>4.71E-04<br>3.14E-04<br>3.14E-04<br>3.14E-04<br>5.50E-04<br>6.28E-04<br>4.28E-04<br>4.71E-04<br>4.71E-04<br>1.73E-03<br>1.26E-03                                                                                                                                                                                                      | 0.55<br>0.53<br>0.52<br>0.50<br>0.49<br>0.47<br>0.46<br>0.44<br>0.42<br>0.40<br>0.38<br>0.36<br>0.32<br>0.26<br>0.20                                                                                                                                                                                   | 2.4E-05<br>2.5E-05<br>2.5E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.5E-05<br>1.7E-05<br>2.2E-05<br>2.1E-05<br>2.2E-05<br>9.1E-05<br>2.2E-05<br>9.1E-05<br>1.6E-05<br>2.9E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 85.7<br>88.2<br>90.9<br>112.9<br>77.7<br>79.7<br>102.7<br>150.0<br>90.6<br>59.5<br>74.7<br>78.6<br>328.4<br>58.9<br>105.6                                                                                                                                        |
| .00 0.3<br>.50 0.35<br>.00 0.40<br>.50 0.46<br>.00 0.50<br>.50 0.54<br>.00 0.59<br>.00 0.66<br>.00 0.74<br>.00 0.79<br>.00 0.85<br>.00 0.71<br>.00 0.91<br>5.00 1.13<br>0.00 1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .3<br>35<br>40<br>46<br>55<br>54<br>59<br>66<br>66<br>74<br>79<br>85<br>91<br>13                                                                                                                                                         | 1.65<br>1.60<br>1.54<br>1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71<br>0.49                                                                                                                             | 90<br>120<br>150<br>210<br>240<br>270<br>300<br>360<br>420<br>480<br>540<br>600<br>900                                                                                                                                        | 120<br>150<br>180<br>210<br>270<br>300<br>360<br>420<br>480<br>540<br>600<br>900                                                                                                                                                                                   | $\begin{array}{c} 1.70\\ 1.65\\ 1.60\\ 1.54\\ 1.50\\ 1.46\\ 1.41\\ 1.34\\ 1.26\\ 1.21\\ 1.15\\ 1.09\\ 0.87\end{array}$                                                                                                                                  | $1.65 \\ 1.60 \\ 1.54 \\ 1.50 \\ 1.46 \\ 1.41 \\ 1.34 \\ 1.26 \\ 1.21 \\ 1.15 \\ 1.09 \\ 0.87 \\ 0.71 \\ 0.71 \\ 0.71 \\ 0.85 \\ 0.71 \\ 0.85 \\ 0.71 \\ 0.85 \\ 0.71 \\ 0.85 \\ 0.71 \\ 0.85 \\ 0.71 \\ 0.85 \\ 0.71 \\ 0.85 \\ 0.85 \\ 0.71 \\ 0.85 \\ 0.71 \\ 0.85 \\ 0.71 \\ 0.85 \\ 0.85 \\ 0.71 \\ 0.85 \\ 0.85 \\ 0.71 \\ 0.85 \\ 0.85 \\ 0.71 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ 0.85 \\ $                                                                                                                      | 3.93E-04<br>3.93E-04<br>4.71E-04<br>3.14E-04<br>3.93E-04<br>5.50E-04<br>6.28E-04<br>3.93E-04<br>4.71E-04<br>4.71E-04<br>1.73E-03<br>1.26E-03                                                                                                                                                                                                                  | 0.53<br>0.52<br>0.50<br>0.49<br>0.47<br>0.46<br>0.44<br>0.42<br>0.40<br>0.38<br>0.36<br>0.32<br>0.26<br>0.20                                                                                                                                                                                           | 2.5E-05<br>2.5E-05<br>3.1E-05<br>2.2E-05<br>2.2E-05<br>2.9E-05<br>4.2E-05<br>2.5E-05<br>1.7E-05<br>2.1E-05<br>2.2E-05<br>9.1E-05<br>1.6E-05<br>2.9E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 88.2<br>90.9<br>112.9<br>77.7<br>79.7<br>102.7<br>150.0<br>90.6<br>59.5<br>74.7<br>78.6<br>328.4<br>58.9<br>105.6                                                                                                                                                |
| .50 0.35<br>.00 0.40<br>.50 0.46<br>.00 0.50<br>.50 0.54<br>.00 0.59<br>.00 0.66<br>.00 0.74<br>.00 0.79<br>.00 0.85<br>0.00 0.91<br>5.00 1.13<br>0.00 1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35<br>40<br>50<br>54<br>59<br>66<br>74<br>79<br>85<br>91<br>13                                                                                                                                                                           | 1.60<br>1.54<br>1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71<br>0.49                                                                                                                                     | 120<br>150<br>210<br>240<br>270<br>300<br>360<br>420<br>480<br>540<br>600<br>900                                                                                                                                              | 150<br>180<br>210<br>240<br>270<br>300<br>360<br>420<br>480<br>540<br>600<br>900                                                                                                                                                                                   | 1.65<br>1.60<br>1.54<br>1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87                                                                                                                                                            | $\begin{array}{c} 1.60\\ 1.54\\ 1.50\\ 1.46\\ 1.41\\ 1.34\\ 1.26\\ 1.21\\ 1.15\\ 1.09\\ 0.87\\ 0.71\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.93E-04<br>4.71E-04<br>3.14E-04<br>3.93E-04<br>5.50E-04<br>6.28E-04<br>3.93E-04<br>4.71E-04<br>4.71E-04<br>1.73E-03<br>1.26E-03                                                                                                                                                                                                                              | 0.52<br>0.50<br>0.49<br>0.47<br>0.46<br>0.44<br>0.42<br>0.40<br>0.38<br>0.36<br>0.32<br>0.26<br>0.20                                                                                                                                                                                                   | 2.5E-05<br>3.1E-05<br>2.2E-05<br>2.9E-05<br>4.2E-05<br>2.5E-05<br>1.7E-05<br>2.1E-05<br>2.2E-05<br>9.1E-05<br>1.6E-05<br>2.9E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 90.9<br>112.9<br>77.7<br>102.7<br>150.0<br>90.6<br>59.5<br>74.7<br>78.6<br>328.4<br>58.9<br>105.6                                                                                                                                                                |
| .00 0.40<br>.50 0.46<br>.00 0.50<br>.50 0.54<br>.00 0.66<br>.00 0.74<br>.00 0.79<br>.00 0.85<br>.00 0.91<br>5.00 1.13<br>0.00 1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40<br>46<br>50<br>54<br>59<br>66<br>66<br>74<br>79<br>85<br>91<br>13                                                                                                                                                                     | 1.54<br>1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71<br>0.49                                                                                                                                             | 150<br>180<br>210<br>240<br>270<br>300<br>360<br>420<br>540<br>600<br>900                                                                                                                                                     | 180<br>210<br>240<br>270<br>300<br>360<br>420<br>480<br>540<br>600<br>900                                                                                                                                                                                          | 1.60<br>1.54<br>1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87                                                                                                                                                                    | 1.54<br>1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.71E-04<br>3.14E-04<br>3.93E-04<br>5.50E-04<br>6.28E-04<br>3.93E-04<br>4.71E-04<br>4.71E-04<br>1.73E-03<br>1.26E-03                                                                                                                                                                                                                                          | 0.50<br>0.49<br>0.47<br>0.46<br>0.44<br>0.42<br>0.40<br>0.38<br>0.36<br>0.32<br>0.26<br>0.20                                                                                                                                                                                                           | 3.1E-05<br>2.2E-05<br>2.2E-05<br>2.2E-05<br>2.5E-05<br>2.5E-05<br>2.1E-05<br>2.2E-05<br>9.1E-05<br>1.6E-05<br>2.9E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 112.9<br>77.7<br>79.7<br>102.7<br>150.0<br>90.6<br>59.5<br>74.7<br>78.6<br>328.4<br>58.9<br>105.6                                                                                                                                                                |
| .50 0.46<br>.00 0.50<br>.50 0.54<br>.00 0.69<br>.00 0.66<br>.00 0.74<br>.00 0.79<br>.00 0.85<br>.00 0.91<br>5.00 1.13<br>.00 1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46<br>50<br>54<br>59<br>66<br>74<br>79<br>85<br>91<br>13                                                                                                                                                                                 | 1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71<br>0.49                                                                                                                                                     | 180<br>210<br>270<br>300<br>360<br>420<br>480<br>540<br>600<br>900                                                                                                                                                            | 210<br>240<br>270<br>300<br>420<br>480<br>540<br>600<br>900                                                                                                                                                                                                        | 1.54<br>1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87                                                                                                                                                                            | 1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.14E-04<br>3.14E-04<br>3.93E-04<br>5.50E-04<br>6.28E-04<br>3.93E-04<br>4.71E-04<br>4.71E-04<br>1.73E-03<br>1.26E-03                                                                                                                                                                                                                                          | 0.49<br>0.47<br>0.46<br>0.44<br>0.42<br>0.40<br>0.38<br>0.36<br>0.32<br>0.26<br>0.20                                                                                                                                                                                                                   | 2.2E-05<br>2.2E-05<br>2.9E-05<br>4.2E-05<br>2.5E-05<br>1.7E-05<br>2.1E-05<br>2.2E-05<br>9.1E-05<br>1.6E-05<br>2.9E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 77.7<br>79.7<br>102.7<br>150.0<br>90.6<br>59.5<br>74.7<br>78.6<br>328.4<br>58.9<br>105.6                                                                                                                                                                         |
| .00 0.50<br>.50 0.54<br>.00 0.59<br>.00 0.66<br>.00 0.74<br>.00 0.79<br>.00 0.85<br>.00 1.13<br>0.00 1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50<br>54<br>59<br>66<br>74<br>79<br>85<br>91<br>13                                                                                                                                                                                       | 1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71<br>0.49                                                                                                                                                             | 210<br>240<br>270<br>300<br>360<br>420<br>480<br>540<br>600<br>900                                                                                                                                                            | 240<br>270<br>300<br>420<br>480<br>540<br>600<br>900                                                                                                                                                                                                               | 1.50<br>1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87                                                                                                                                                                                    | 1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.14E-04<br>3.93E-04<br>5.50E-04<br>6.28E-04<br>3.93E-04<br>4.71E-04<br>1.73E-03<br>1.26E-03                                                                                                                                                                                                                                                                  | 0.47<br>0.46<br>0.44<br>0.42<br>0.40<br>0.38<br>0.36<br>0.32<br>0.26<br>0.20                                                                                                                                                                                                                           | 2.2E-05<br>2.9E-05<br>4.2E-05<br>2.5E-05<br>1.7E-05<br>2.1E-05<br>2.2E-05<br>9.1E-05<br>1.6E-05<br>2.9E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 79.7<br>102.7<br>150.0<br>90.6<br>59.5<br>74.7<br>78.6<br>328.4<br>58.9<br>105.6                                                                                                                                                                                 |
| .50 0.54<br>.00 0.59<br>.00 0.66<br>.00 0.74<br>.00 0.79<br>.00 0.85<br>0.00 0.91<br>5.00 1.13<br>0.00 1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 54<br>59<br>66<br>74<br>79<br>85<br>91<br>13                                                                                                                                                                                             | 1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71<br>0.49                                                                                                                                                                     | 240<br>270<br>360<br>420<br>480<br>540<br>600<br>900                                                                                                                                                                          | 270<br>300<br>360<br>420<br>480<br>540<br>600<br>900                                                                                                                                                                                                               | 1.46<br>1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87                                                                                                                                                                                            | 1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.93E-04<br>5.50E-04<br>6.28E-04<br>3.93E-04<br>4.71E-04<br>4.71E-04<br>1.73E-03<br>1.26E-03                                                                                                                                                                                                                                                                  | 0.46<br>0.44<br>0.42<br>0.40<br>0.38<br>0.36<br>0.32<br>0.26<br>0.20                                                                                                                                                                                                                                   | 2.9E-05<br>4.2E-05<br>2.5E-05<br>1.7E-05<br>2.2E-05<br>9.1E-05<br>1.6E-05<br>2.9E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 102.7<br>150.0<br>90.6<br>59.5<br>74.7<br>78.6<br>328.4<br>58.9<br>105.6                                                                                                                                                                                         |
| .00 0.59<br>.00 0.66<br>.00 0.74<br>.00 0.79<br>.00 0.85<br>.00 0.91<br>5.00 1.13<br>0.00 1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 59<br>66<br>74<br>79<br>85<br>91<br>13                                                                                                                                                                                                   | 1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71<br>0.49                                                                                                                                                                             | 270<br>300<br>360<br>420<br>480<br>540<br>600<br>900                                                                                                                                                                          | 300<br>360<br>420<br>480<br>540<br>600<br>900                                                                                                                                                                                                                      | 1.41<br>1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87                                                                                                                                                                                                    | 1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.50E-04<br>6.28E-04<br>3.93E-04<br>4.71E-04<br>4.71E-04<br>1.73E-03<br>1.26E-03                                                                                                                                                                                                                                                                              | 0.44<br>0.42<br>0.38<br>0.36<br>0.32<br>0.26<br>0.20                                                                                                                                                                                                                                                   | 4.2E-05<br>2.5E-05<br>2.1E-05<br>2.1E-05<br>2.2E-05<br>9.1E-05<br>1.6E-05<br>2.9E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 150.0<br>90.6<br>59.5<br>74.7<br>78.6<br>328.4<br>58.9<br>105.6                                                                                                                                                                                                  |
| .00 0.66<br>.00 0.74<br>.00 0.79<br>.00 0.85<br>5.00 1.13<br>5.00 1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 66<br>74<br>79<br>85<br>91<br>13                                                                                                                                                                                                         | 1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71<br>0.49                                                                                                                                                                                     | 300<br>360<br>420<br>480<br>540<br>600<br>900                                                                                                                                                                                 | 360<br>420<br>480<br>540<br>600<br>900                                                                                                                                                                                                                             | 1.34<br>1.26<br>1.21<br>1.15<br>1.09<br>0.87                                                                                                                                                                                                            | 1.26<br>1.21<br>1.15<br>1.09<br>0.87<br>0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.28E-04<br>3.93E-04<br>4.71E-04<br>4.71E-04<br>1.73E-03<br>1.26E-03                                                                                                                                                                                                                                                                                          | 0.42<br>0.40<br>0.38<br>0.36<br>0.32<br>0.26<br>0.20<br>Considered average                                                                                                                                                                                                                             | 2.5E-05<br>1.7E-05<br>2.1E-05<br>2.2E-05<br>9.1E-05<br>1.6E-05<br>2.9E-05<br>2.9E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 90.6<br>59.5<br>74.7<br>78.6<br>328.4<br>58.9<br>105.6                                                                                                                                                                                                           |
| .00 0.74<br>.00 0.79<br>.00 0.85<br>.00 0.91<br>5.00 1.13<br>0.00 1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 74<br>79<br>85<br>91<br>13                                                                                                                                                                                                               | 1.21<br>1.15<br>1.09<br>0.87<br>0.71<br>0.49                                                                                                                                                                                             | 360<br>420<br>480<br>540<br>600<br>900                                                                                                                                                                                        | 420<br>480<br>540<br>600<br>900                                                                                                                                                                                                                                    | 1.26<br>1.21<br>1.15<br>1.09<br>0.87                                                                                                                                                                                                                    | 1.21<br>1.15<br>1.09<br>0.87<br>0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.93E-04<br>4.71E-04<br>4.71E-04<br>1.73E-03<br>1.26E-03                                                                                                                                                                                                                                                                                                      | 0.40<br>0.38<br>0.36<br>0.32<br>0.26<br>0.20<br>Considered average                                                                                                                                                                                                                                     | 1.7E-05<br>2.1E-05<br>2.2E-05<br>9.1E-05<br>1.6E-05<br>2.9E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 59.5<br>74.7<br>78.6<br>328.4<br>58.9<br>105.6                                                                                                                                                                                                                   |
| .00 0.79<br>.00 0.85<br>0.00 0.91<br>5.00 1.13<br>0.00 1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 79<br>85<br>91<br>13                                                                                                                                                                                                                     | 1.15<br>1.09<br>0.87<br>0.71<br>0.49                                                                                                                                                                                                     | 420<br>480<br>540<br>600<br>900                                                                                                                                                                                               | 480<br>540<br>600<br>900                                                                                                                                                                                                                                           | 1.21<br>1.15<br>1.09<br>0.87                                                                                                                                                                                                                            | 1.15<br>1.09<br>0.87<br>0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.71E-04<br>4.71E-04<br>1.73E-03<br>1.26E-03                                                                                                                                                                                                                                                                                                                  | 0.38<br>0.36<br>0.32<br>0.26<br>0.20<br>Considered average                                                                                                                                                                                                                                             | 2.1E-05<br>2.2E-05<br>9.1E-05<br>1.6E-05<br>2.9E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74.7<br>78.6<br>328.4<br>58.9<br>105.6<br>123.4                                                                                                                                                                                                                  |
| .00 0.85<br>.00 0.91<br>5.00 1.13<br>0.00 1.29<br>e: Tests struck out w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 85<br>91<br>13                                                                                                                                                                                                                           | 1.09<br>0.87<br>0.71<br>0.49                                                                                                                                                                                                             | 480<br>540<br>600<br>900                                                                                                                                                                                                      | 540<br>600<br>900                                                                                                                                                                                                                                                  | 1.15<br>1.09<br>0.87                                                                                                                                                                                                                                    | 1.09<br>0.87<br>0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.71E-04<br>1.73E-03<br>1.26E-03                                                                                                                                                                                                                                                                                                                              | 0.36<br>0.32<br>0.26<br>0.20<br>Considered average                                                                                                                                                                                                                                                     | 2.2E-05<br>9.1E-05<br>1.6E-05<br>2.9E-05<br>≥ 3.4E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 78.6<br>328.4<br>58.9<br>105.6<br>123.4                                                                                                                                                                                                                          |
| 0.00 0.91<br>5.00 1.13<br>0.00 1.29<br>e: Tests struck out w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 91<br>13                                                                                                                                                                                                                                 | 0.87<br>0.71<br>0.49                                                                                                                                                                                                                     | 540<br>600<br>900                                                                                                                                                                                                             | 600<br>900                                                                                                                                                                                                                                                         | 1.09<br>0.87                                                                                                                                                                                                                                            | 0.87<br>0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.73E-03<br>1.26E-03                                                                                                                                                                                                                                                                                                                                          | 0.32<br>0.26<br>0.20<br>Considered average                                                                                                                                                                                                                                                             | 9.1E-05<br>1.6E-05<br>2.9E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 328.4<br>58.9<br>105.6<br>123.4                                                                                                                                                                                                                                  |
| 5.00 1.13<br>0.00 1.29<br>e: Tests struck out w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13                                                                                                                                                                                                                                       | 0.71<br>0.49                                                                                                                                                                                                                             | 600<br>900                                                                                                                                                                                                                    | 900                                                                                                                                                                                                                                                                | 0.87                                                                                                                                                                                                                                                    | 0.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.26E-03                                                                                                                                                                                                                                                                                                                                                      | 0.26<br>0.20<br>Considered average                                                                                                                                                                                                                                                                     | 1.6E-05<br>2.9E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58.9<br>105.6<br>123.4                                                                                                                                                                                                                                           |
| 2.00 1.29<br>e: Tests struck out w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                          | 0.49                                                                                                                                                                                                                                     | 900                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                               | 0.20<br>Considered average                                                                                                                                                                                                                                                                             | 2.9E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 105.6<br>123.4                                                                                                                                                                                                                                                   |
| e: Tests struck out w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               | 1200                                                                                                                                                                                                                                                               | 0.11                                                                                                                                                                                                                                                    | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                               | Considered average                                                                                                                                                                                                                                                                                     | e 3.4E-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 123.4                                                                                                                                                                                                                                                            |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t were not inc                                                                                                                                                                                                                           | iciuded in the a                                                                                                                                                                                                                         | average                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               | S                                                                                                                                                                                                                                                                  | oakage R                                                                                                                                                                                                                                                | lesults S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                    | Time (r                                                                                                                                                                                                                                                 | ninutes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                          | 5                                                                                                                                                                                                                                        |                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15                                                                                                                                                                                                                                                                                                                                                            | 20                                                                                                                                                                                                                                                                                                     | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                  |
| (in the second s                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                  |
| 0.2 ver (wetres)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                  |
| yel (metre<br>9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                  |
| au 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                  |
| ) e 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ×                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                  |
| ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | le la constante de la constante                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                  |
| σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                  |
| Unc 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                  |
| 8 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                  |
| 3elo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                  |
| th l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               | 7                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                  |
| 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                  |
| 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                  |
| 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                  |
| 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                  |

| JENT:<br>ROJECT:<br>SST LOCA'<br>est Hole D<br>set Hole D<br>roundwate<br>Time<br>T<br>min<br>0<br>0.17<br>0.33<br>0.50<br>0.67<br>0.83<br>1.00<br>1.50<br>2.00<br>2.50<br>3.00   | Diameter<br>Depth 'D'                                                                                            | Calcutta Farm<br>Tauranga Roa<br>S11<br>Water depth<br>=D-d<br>m<br>3.49 | d Industria      | 0.10<br>4.00<br>countered | m<br>m   |          | LOCATION:<br>JOB NUMBER:<br>TEST DATE:<br>Base Area 'B' | Matamata<br>TGA2020-0304<br>27/07/2021<br>0.008 | m2             |               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------|---------------------------|----------|----------|---------------------------------------------------------|-------------------------------------------------|----------------|---------------|
| EST LOCA<br>est Hole D<br>est Hole D<br>roundwate<br>Time<br>T<br>min<br>0<br>0.17<br>0.33<br>0.50<br>0.67<br>0.83<br>1.00<br>1.50<br>2.00<br>3.00                                | Diameter<br>Depth 'D'<br>er Level<br><b>Water Level BGL</b><br><i>d</i><br><i>m</i><br>0<br>0.51<br>0.86<br>1.07 | S11<br>Water depth<br>=D-d<br>m                                          | Not En<br>Time s | 0.10<br>4.00<br>countered | m<br>m   |          | TEST DATE:<br>Base Area 'B'                             | 27/07/2021                                      | m2             |               |
| est Hole D<br>est Hole D<br>roundwate<br><b>Time</b><br><b>T</b><br><b>min</b><br>0<br>0.17<br>0.33<br>0.50<br>0.67<br>0.83<br>1.00<br>1.50<br>2.00<br>3.00                       | Diameter<br>Depth 'D'<br>er Level<br><b>Water Level BGL</b><br><i>d</i><br><i>m</i><br>0<br>0.51<br>0.86<br>1.07 | Water depth<br>=D-d<br>m                                                 | Time s           | 4.00<br>countered         | m        |          | Base Area 'B'                                           |                                                 | m2             |               |
| est Hole D<br>roundwate<br><b>Time</b><br><b>T</b><br><b>min</b><br>0<br>0.17<br>0.33<br>0.50<br>0.67<br>0.83<br>1.00<br>1.50<br>2.00<br>2.50<br>3.00                             | Depth 'D'<br>er Level<br>Water Level BGL<br>d<br>m<br>0.51<br>0.86<br>1.07                                       | =D-d<br>m                                                                | Time s           | 4.00<br>countered         | m        |          |                                                         | 0.008                                           | m2             |               |
| Time<br>T min<br>0<br>0.17<br>0.33<br>0.50<br>0.67<br>0.83<br>1.00<br>1.50<br>2.00<br>2.50<br>3.00                                                                                | Water Level BGL<br>d<br>m<br>0.51<br>0.86<br>1.07                                                                | =D-d<br>m                                                                | Time s           | countered                 |          |          |                                                         |                                                 | 0.008 m2       |               |
| Time<br><i>T</i><br><i>min</i><br>0<br>0.17<br>0.33<br>0.50<br>0.67<br>0.83<br>1.00<br>1.50<br>2.00<br>2.50<br>3.00                                                               | Water Level BGL<br>d<br>m<br>0<br>0.51<br>0.86<br>1.07                                                           | =D-d<br>m                                                                | Time s           |                           | m        |          | Circumference 'C'                                       | 0.314                                           | m2             |               |
| T           min           0           0.17           0.33           0.50           0.67           0.83           1.00           1.50           2.00           2.50           3.00 | d<br>m<br>0<br>0.51<br>0.86<br>1.07                                                                              | =D-d<br>m                                                                |                  |                           |          |          |                                                         |                                                 |                |               |
| T           min           0           0.17           0.33           0.50           0.67           0.83           1.00           1.50           2.00           2.50           3.00 | d<br>m<br>0<br>0.51<br>0.86<br>1.07                                                                              | =D-d<br>m                                                                |                  |                           | Denth    | steps    | Volume soaked                                           | Soakage surface area                            | Soaka          | ge Rate       |
| 0<br>0.17<br>0.33<br>0.50<br>0.67<br>0.83<br>1.00<br>1.50<br>2.00<br>2.50<br>3.00                                                                                                 | 0<br>0.51<br>0.86<br>1.07                                                                                        |                                                                          |                  | t1                        | h0       | h1       | V=(h0-h1)*B                                             | A=(C*(h0+h1)/2)+B                               | SR=V/A/(t1-t0) |               |
| 0.17<br>0.33<br>0.50<br>0.67<br>0.83<br>1.00<br>1.50<br>2.00<br>2.50<br>3.00                                                                                                      | 0.51<br>0.86<br>1.07                                                                                             | 3.49                                                                     | sec              | sec                       | m        | m        | m3                                                      | <i>m</i> 2                                      | m3/m2/sec      | litres/m2/hou |
| 0.33<br>0.50<br>0.67<br>0.83<br>1.00<br>1.50<br>2.00<br>2.50<br>3.00                                                                                                              | 0.86<br>1.07                                                                                                     |                                                                          | -                | -                         | -        | -        | -                                                       | -                                               | -              | -             |
| 0.50<br>0.67<br>0.83<br>1.00<br>1.50<br>2.00<br>2.50<br>3.00                                                                                                                      | 1.07                                                                                                             | 3.14                                                                     | 0                | 10                        | 3.49     | 3.14     | 2.75E-03                                                | 1.05                                            | 2.6E-04        | 943.4         |
| 0.67<br>0.83<br>1.00<br>1.50<br>2.00<br>2.50<br>3.00                                                                                                                              |                                                                                                                  | 2.93                                                                     | 10               | 20                        | 3.14     | 2.93     | 1.65E-03                                                | 0.96                                            | 1.7E-04        | 617.8         |
| 0.83<br>1.00<br>1.50<br>2.00<br>2.50<br>3.00                                                                                                                                      |                                                                                                                  | 2.73                                                                     | 20               | 30                        | 2.93     | 2.73     | 1.57E-03                                                | 0.90                                            | 1.8E-04        | 630.7         |
| 1.00<br>1.50<br>2.00<br>2.50<br>3.00                                                                                                                                              |                                                                                                                  | 2.60                                                                     | 30               | 40                        | 2.73     | 2.60     | 1.02E-03                                                | 0.84                                            | 1.2E-04        | 435.1         |
| 1.50<br>2.00<br>2.50<br>3.00                                                                                                                                                      | 1.40                                                                                                             | 2.41                                                                     | 40               | 50                        | 2.60     | 2.41     | 1.49E-03                                                | 0.79                                            | 1.9E-04        | 676.2         |
| 2.00<br>2.50<br>3.00                                                                                                                                                              | 1.59                                                                                                             | 2.33                                                                     | 50               | 60                        | 2.41     | 2.33     | 6.28E-04                                                | 0.75                                            | 8.4E-05        | 300.8         |
| 2.50<br>3.00                                                                                                                                                                      | 1.67                                                                                                             | 2.03                                                                     | 60               | 90                        | 2.33     | 2.03     | 2.36E-03                                                | 0.69                                            | 1.1E-04        | 408.3         |
| 3.00                                                                                                                                                                              | 1.97                                                                                                             | 1.93                                                                     | 90               | 120                       | 2.03     | 1.93     | 7.85E-04                                                | 0.63                                            | 4.2E-05        | 149.7         |
|                                                                                                                                                                                   | 2.07                                                                                                             | 1.87                                                                     | 120              | 150                       | 1.93     | 1.87     | 4.71E-04                                                | 0.60                                            | 2.6E-05        | 93.6          |
|                                                                                                                                                                                   | 2.13                                                                                                             | 1.82                                                                     | 150              | 180                       | 1.87     | 1.82     | 3.93E-04                                                | 0.59                                            | 2.2E-05        | 80.3          |
| 3.50                                                                                                                                                                              | 2.18                                                                                                             | 1.77                                                                     | 180              | 210                       | 1.82     | 1.77     | 3.93E-04                                                | 0.57                                            | 2.3E-05        | 82.5          |
| 4.00                                                                                                                                                                              | 2.23                                                                                                             | 1.70                                                                     | 210              | 240                       | 1.77     | 1.70     | 5.50E-04                                                | 0.55                                            | 3.3E-05        | 119.4         |
| 4.50                                                                                                                                                                              | 2.30                                                                                                             | 1.64                                                                     | 240              | 270                       | 1.70     | 1.64     | 4.71E-04                                                | 0.53                                            | 3.0E-05        | 106.3         |
| 5.00                                                                                                                                                                              | 2.36                                                                                                             | 1.56                                                                     | 270              | 300                       | 1.64     | 1.56     | 6.28E-04                                                | 0.51                                            | 4.1E-05        | 147.8         |
| 6.00                                                                                                                                                                              | 2.44                                                                                                             | 1.50                                                                     | 300              | 360                       | 1.56     | 1.50     | 4.71E-04                                                | 0.49                                            | 1.6E-05        | 57.9          |
| 7.00                                                                                                                                                                              | 2.50                                                                                                             | 1.47                                                                     | 360              | 420                       | 1.50     | 1.47     | 2.36E-04                                                | 0.47                                            | 8.3E-06        | 29.8          |
| 8.00                                                                                                                                                                              | 2.53                                                                                                             | 1.43                                                                     | 420              | 480                       | 1.47     | 1.43     | 3.14E-04                                                | 0.46                                            | 1.1E-05        | 40.7          |
| 9.00                                                                                                                                                                              | 2.57                                                                                                             | 1.39                                                                     | 480              | 540                       | 1.43     | 1.39     | 3.14E-04                                                | 0.45                                            | 1.2E-05        | 41.8          |
| 10.00                                                                                                                                                                             | 2.61                                                                                                             | 1.10                                                                     | 540              | 600                       | 1.39     | 1.10     | 2.28E-03                                                | 0.40                                            | 9.5E-05        | 342.8         |
| 15.00                                                                                                                                                                             | 2.90                                                                                                             | 0.94                                                                     | 600              | 900                       | 1.10     | 0.94     | 1.26E-03                                                | 0.33                                            | 1.3E-05        | 46.0          |
| 20.00                                                                                                                                                                             | 3.06                                                                                                             | 0.73                                                                     | 900              | 1200                      | 0.94     | 0.73     | 1.65E-03                                                | 0.27                                            | 2.0E-05        | 73.3          |
| ote: Tests                                                                                                                                                                        | struck out were not                                                                                              | included in the a                                                        | verage           |                           |          |          |                                                         | Design rate                                     | 3.6E-05        | 129.1         |
|                                                                                                                                                                                   |                                                                                                                  |                                                                          |                  | S                         | oakage R | esults S | 511                                                     |                                                 |                |               |
|                                                                                                                                                                                   |                                                                                                                  |                                                                          |                  |                           | Time (n  | ninutes) |                                                         |                                                 |                |               |
|                                                                                                                                                                                   | 0                                                                                                                | 5                                                                        |                  | 1                         | 0        |          | 15                                                      | 20                                              | 25             |               |
| 0                                                                                                                                                                                 | )                                                                                                                |                                                                          |                  |                           |          |          |                                                         |                                                 |                |               |
|                                                                                                                                                                                   |                                                                                                                  |                                                                          |                  |                           |          |          |                                                         |                                                 |                |               |
| Level (metres)                                                                                                                                                                    | 5                                                                                                                |                                                                          |                  |                           |          |          |                                                         |                                                 |                |               |
| met                                                                                                                                                                               | I                                                                                                                |                                                                          |                  |                           |          |          |                                                         |                                                 |                |               |
| <b>)</b> 1                                                                                                                                                                        |                                                                                                                  |                                                                          |                  |                           |          |          |                                                         |                                                 |                |               |
|                                                                                                                                                                                   |                                                                                                                  |                                                                          |                  |                           |          |          |                                                         |                                                 |                |               |
| Depth Below Ground<br>2.5                                                                                                                                                         |                                                                                                                  |                                                                          |                  |                           |          |          |                                                         |                                                 |                |               |
|                                                                                                                                                                                   |                                                                                                                  |                                                                          |                  |                           |          |          |                                                         |                                                 |                |               |
| ū                                                                                                                                                                                 |                                                                                                                  |                                                                          |                  |                           |          |          |                                                         |                                                 |                |               |
| <b>8</b> 2                                                                                                                                                                        | 2                                                                                                                |                                                                          |                  |                           |          |          |                                                         |                                                 |                |               |
| 3el                                                                                                                                                                               |                                                                                                                  | •                                                                        |                  |                           |          |          |                                                         |                                                 |                |               |
| ÷                                                                                                                                                                                 |                                                                                                                  |                                                                          |                  |                           |          |          |                                                         |                                                 |                |               |
| <b>d</b> 2.5                                                                                                                                                                      | 5                                                                                                                |                                                                          |                  |                           |          |          |                                                         |                                                 |                |               |
|                                                                                                                                                                                   |                                                                                                                  |                                                                          |                  |                           |          |          |                                                         |                                                 |                |               |
|                                                                                                                                                                                   | ,                                                                                                                |                                                                          |                  |                           |          |          |                                                         |                                                 |                |               |
| 3                                                                                                                                                                                 | 5                                                                                                                |                                                                          |                  |                           |          |          |                                                         |                                                 |                |               |
|                                                                                                                                                                                   |                                                                                                                  |                                                                          |                  |                           |          |          |                                                         |                                                 |                |               |
| 3.5                                                                                                                                                                               | ;                                                                                                                |                                                                          |                  |                           |          |          |                                                         |                                                 |                |               |
|                                                                                                                                                                                   |                                                                                                                  |                                                                          |                  |                           |          |          |                                                         |                                                 |                |               |
|                                                                                                                                                                                   |                                                                                                                  |                                                                          |                  |                           |          |          |                                                         |                                                 |                |               |

|                  |                                                                                             | <b>.</b> –          |            | FAL        | LING H                      | EAD 3             | OAKAGE TEST               | Matamata                                |                    |                |
|------------------|---------------------------------------------------------------------------------------------|---------------------|------------|------------|-----------------------------|-------------------|---------------------------|-----------------------------------------|--------------------|----------------|
| LIENT:           |                                                                                             | Calcutta Farm       |            |            |                             |                   | LOCATION:                 |                                         |                    |                |
| ROJEC            | T:<br>DCATION:                                                                              | Tauranga Roa<br>S12 | d Industri | al Subdivi | sion                        |                   | JOB NUMBER:<br>TEST DATE: | TGA2020-0304<br>15/07/2021 - 16/07/2021 |                    |                |
| 201 20           |                                                                                             | 0.12                |            |            |                             |                   | ILOI DAIL.                |                                         |                    |                |
|                  | le Diameter                                                                                 |                     |            | 0.10       |                             |                   | Base Area 'B'             | 0.008                                   |                    |                |
|                  | le Depth 'D'                                                                                | 2.00 m              |            |            |                             | Circumference 'C' | 0.314                     | m2                                      |                    |                |
| roundv           | vater Level                                                                                 |                     | Not En     | countered  | m                           |                   |                           |                                         |                    |                |
| Time             | Water Level BGL                                                                             | Water depth         | Time       | steps      | Depth                       | steps             | Volume soaked             | Soakage surface area                    | Soaka              | ge Rate        |
| Τ                | d                                                                                           | =D-d                | t0         | t1         | h0                          | h1                | V=(h0-h1)*B               | A=(C*(h0+h1)/2)+B                       | SR=V/A/(t1-t0)     |                |
| min              | m                                                                                           | m                   | sec        | sec        | m                           | т                 | m3                        | m2                                      | m3/m2/sec          | litres/m2/hour |
| 0                | 0                                                                                           | 1.94                | -          | -          | -                           | -                 | -                         | -                                       | -                  | -              |
| 0.17             | 0.06<br>0.08                                                                                | 1.92<br>1.90        | 0<br>10    | 10<br>20   | 1.94<br>1.92                | 1.92              | 1.57E-04<br>1.57E-04      | 0.61<br>0.61                            | 2.6E-05            | 92.1<br>93.0   |
| 0.33             |                                                                                             |                     | 20         | 20<br>30   |                             | 1.90              |                           |                                         | 2.6E-05            | 93.0<br>285.0  |
| 0.50             | 0.10                                                                                        | 1.84                | 20<br>30   | 30<br>40   | 1.90                        | 1.84              | 4.71E-04<br>2.36E-04      | 0.60                                    | 7.9E-05            |                |
| 0.67<br>0.83     | 0.16<br>0.19                                                                                | 1.81<br>1.77        | 30<br>40   | 40<br>50   | 1.84<br>1.81                | 1.81<br>1.77      |                           | 0.58                                    | 4.1E-05            | 145.9<br>198.3 |
| 1.00             | 0.19                                                                                        | 1.66                | 40<br>50   | 50<br>60   | 1.01                        | 1.66              | 3.14E-04<br>8.64E-04      | 0.57<br>0.55                            | 5.5E-05<br>1.6E-04 | 569.0          |
| 1.50             | 0.23                                                                                        | 1.54                | 50<br>60   | 90         | 1.66                        | 1.66              | 9.42E-04                  | 0.55                                    | 6.2E-04            | 221.5          |
| 2.00             | 0.46                                                                                        | 1.44                | 90         | 120        | 1.54                        | 1.34              | 9.42E-04<br>7.85E-04      | 0.48                                    | 5.5E-05            | 198.0          |
| 2.00             | 0.56                                                                                        | 1.36                | 90<br>120  | 120        | 1.54                        | 1.44              | 6.28E-04                  | 0.48                                    | 4.7E-05            | 168.4          |
| 3.00             | 0.64                                                                                        | 1.29                | 120        | 180        | 1.44                        | 1.30              | 5.50E-04                  | 0.43                                    | 4.7E-05<br>4.3E-05 | 155.6          |
| 3.50             | 0.04                                                                                        | 1.29                | 180        | 210        | 1.30                        | 1.29              | 5.50E-04<br>5.50E-04      | 0.42                                    | 4.6E-05            | 164.1          |
| 4.00             | 0.78                                                                                        | 1.16                | 210        | 240        | 1.23                        | 1.16              | 4.71E-04                  | 0.40                                    | 4.1E-05            | 148.1          |
| 4.50             | 0.84                                                                                        | 1.10                | 240        | 270        | 1.16                        | 1.10              | 4.71E-04                  | 0.36                                    | 4.3E-05            | 155.8          |
| 5.00             | 0.90                                                                                        | 1.01                | 270        | 300        | 1.10                        | 1.01              | 7.07E-04                  | 0.34                                    | 6.9E-05            | 250.0          |
| 6.00             | 0.99                                                                                        | 0.92                | 300        | 360        | 1.01                        | 0.92              | 7.07E-04                  | 0.34                                    | 3.8E-05            | 136.4          |
| 7.00             | 1.08                                                                                        | 0.84                | 360        | 420        | 0.92                        | 0.84              | 6.28E-04                  | 0.28                                    | 3.7E-05            | 132.6          |
| 8.00             | 1.16                                                                                        | 0.77                | 420        | 480        | 0.84                        | 0.77              | 5.50E-04                  | 0.26                                    | 3.5E-05            | 126.5          |
| 9.00             | 1.23                                                                                        | 0.72                | 480        | 540        | 0.77                        | 0.72              | 3.93E-04                  | 0.24                                    | 2.7E-05            | 97.4           |
| 10.00            |                                                                                             | 0.48                | 540        | 600        | 0.72                        | 0.48              | 1.88E-03                  | 0.20                                    | 1.6E-04            | 576.0          |
| 15.00            |                                                                                             | 0.35                | 600        | 900        | 0.48                        | 0.35              | 1.02E-03                  | 0.14                                    | 2.5E-05            | 88.6           |
|                  |                                                                                             |                     |            |            |                             |                   |                           |                                         |                    |                |
| 20.00            | 1.65                                                                                        | 0.16                | 900        | 1200       | 0.35                        | 0.16              | 1.49E-03                  | 0.09<br>Considered average              |                    | 203.6          |
|                  | 1.65<br>ests struck out were not                                                            | 0.16                | 900        |            |                             | 0.16              | 1.49E-03                  |                                         | 5.6E-05            |                |
|                  |                                                                                             | 0.16                | 900        | 1200       |                             |                   |                           | Considered average                      | 5.6E-05            | 200.3          |
|                  |                                                                                             | 0.16                | 900        | 1200       | 0.35<br>oakage R            |                   |                           | Considered average                      | 5.6E-05            | 200.3          |
|                  | ests struck out were not                                                                    | 0.16                | 900        | 1200<br>S  | 0.35<br>oakage R<br>Time (r | esults S          | 12                        | Considered average<br>Design rate       | 5.6E-05<br>2.8E-05 | 200.3          |
|                  |                                                                                             | 0.16                | 900        | 1200       | 0.35<br>oakage R<br>Time (r | esults S          |                           | Considered average                      | 5.6E-05            | 200.3          |
|                  | ests struck out were not                                                                    | 0.16                | 900        | 1200<br>S  | 0.35<br>oakage R<br>Time (r | esults S          | 12                        | Considered average<br>Design rate       | 5.6E-05<br>2.8E-05 | 200.3          |
| ote: Te          | ests struck out were not                                                                    | 0.16                | 900        | 1200<br>S  | 0.35<br>oakage R<br>Time (r | esults S          | 12                        | Considered average<br>Design rate       | 5.6E-05<br>2.8E-05 | 200.3          |
| ote: Te          | ests struck out were not                                                                    | 0.16                | 900        | 1200<br>S  | 0.35<br>oakage R<br>Time (r | esults S          | 12                        | Considered average<br>Design rate       | 5.6E-05<br>2.8E-05 | 200.3          |
| ote: Te          | ests struck out were not                                                                    | 0.16                | 900        | 1200<br>S  | 0.35<br>oakage R<br>Time (r | esults S          | 12                        | Considered average<br>Design rate       | 5.6E-05<br>2.8E-05 | 200.3          |
| ote: Te          | ests struck out were not                                                                    | 0.16                | 900        | 1200<br>S  | 0.35<br>oakage R<br>Time (r | esults S          | 12                        | Considered average<br>Design rate       | 5.6E-05<br>2.8E-05 | 200.3          |
| ote: Te          | ests struck out were not                                                                    | 0.16                | 900        | 1200<br>S  | 0.35<br>oakage R<br>Time (r | esults S          | 12                        | Considered average<br>Design rate       | 5.6E-05<br>2.8E-05 | 200.3          |
| d Level (metres) | ests struck out were not                                                                    | 0.16                | 900        | 1200<br>S  | 0.35<br>oakage R<br>Time (r | esults S          | 12                        | Considered average<br>Design rate       | 5.6E-05<br>2.8E-05 | 200.3          |
| d Level (metres) | ests struck out were not                                                                    | 0.16                | 900        | 1200<br>S  | 0.35<br>oakage R<br>Time (r | esults S          | 12                        | Considered average<br>Design rate       | 5.6E-05<br>2.8E-05 | 200.3          |
| d Level (metres) | ests struck out were not                                                                    | 0.16                | 900        | 1200<br>S  | 0.35<br>oakage R<br>Time (r | esults S          | 12                        | Considered average<br>Design rate       | 5.6E-05<br>2.8E-05 | 200.3          |
| d Level (metres) | ests struck out were not                                                                    | 0.16                | 900        | 1200<br>S  | 0.35<br>oakage R<br>Time (r | esults S          | 12                        | Considered average<br>Design rate       | 5.6E-05<br>2.8E-05 | 200.3          |
| d Level (metres) | o<br>0<br>0.2<br>0.4<br>0.6<br>0.8                                                          | 0.16                | 900        | 1200<br>S  | 0.35<br>oakage R<br>Time (r | esults S          | 12                        | Considered average<br>Design rate       | 5.6E-05<br>2.8E-05 | 200.3          |
| d Level (metres) | ests struck out were not                                                                    | 0.16                | 900        | 1200<br>S  | 0.35<br>oakage R<br>Time (r | esults S          | 12                        | Considered average<br>Design rate       | 5.6E-05<br>2.8E-05 | 200.3          |
| d Level (metres) | o<br>0<br>0.2<br>0.4<br>0.6<br>0.8                                                          | 0.16                | 900        | 1200<br>S  | 0.35<br>oakage R<br>Time (r | esults S          | 12                        | Considered average<br>Design rate       | 5.6E-05<br>2.8E-05 | 200.3          |
| Level (metres)   | ests struck out were not                                                                    | 0.16                | 900        | 1200<br>S  | 0.35<br>oakage R<br>Time (r | esults S          | 12                        | Considered average<br>Design rate       | 5.6E-05<br>2.8E-05 | 200.3          |
| d Level (metres) | ests struck out were not                                                                    | 0.16                | 900        | 1200<br>S  | 0.35<br>oakage R<br>Time (r | esults S          | 12                        | Considered average<br>Design rate       | 5.6E-05<br>2.8E-05 | 200.3          |
| d Level (metres) | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0.16                | 900        | 1200<br>S  | 0.35<br>oakage R<br>Time (r | esults S          | 12                        | Considered average<br>Design rate       | 5.6E-05<br>2.8E-05 | 200.3          |
| d Level (metres) | ests struck out were not                                                                    | 0.16                | 900        | 1200<br>S  | 0.35<br>oakage R<br>Time (r | esults S          | 12                        | Considered average<br>Design rate       | 5.6E-05<br>2.8E-05 | 200.3          |
| d Level (metres) | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0.16                | 900        | 1200<br>S  | 0.35<br>oakage R<br>Time (r | esults S          | 12                        | Considered average<br>Design rate       | 5.6E-05<br>2.8E-05 | 200.3          |
| d Level (metres) | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0.16                | 900        | 1200<br>S  | 0.35<br>oakage R<br>Time (r | esults S          | 12                        | Considered average<br>Design rate       | 5.6E-05<br>2.8E-05 | 200.3          |
| d Level (metres) | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0.16                | 900        | 1200<br>S  | 0.35<br>oakage R<br>Time (r | esults S          | 12                        | Considered average<br>Design rate       | 5.6E-05<br>2.8E-05 | 200.3          |

| CLIENT:          | Calcutta Farms                             |                               |                             |              |        |                                   |     |
|------------------|--------------------------------------------|-------------------------------|-----------------------------|--------------|--------|-----------------------------------|-----|
| LOCATION:        | Tauranga Road, Matamata                    |                               |                             |              |        |                                   |     |
|                  |                                            |                               |                             |              |        |                                   |     |
| JOB NUMBER:      | TGA2020-0304                               |                               |                             |              |        |                                   |     |
| DATE:            | 16-Jul-2021                                |                               |                             |              |        |                                   |     |
|                  | 10 041 2021                                |                               |                             | Sheet 1 of 1 | 1      |                                   |     |
|                  | SOIL HYDRAULIC CO                          |                               | N (CONSTANT HEAD METHOD)    | oneet i oi i |        |                                   |     |
|                  |                                            |                               |                             |              |        |                                   |     |
| HVORSLEV CAS     | E G.                                       |                               |                             |              |        |                                   |     |
|                  | e and sides of test hole with no overlying | restrictive laver             |                             |              |        |                                   |     |
| oounago our suo  |                                            |                               |                             |              |        |                                   |     |
| Hydraulic conduc | tivity (k) = $a \times ln [(m + 1)]$       | n.L/D) + (1 + (m.L/D)^2)^0.5] | SOAKHOLE S03                |              |        |                                   |     |
|                  |                                            | 2.PI.L.Hc                     | Test Hole diameter:         | 0.1 r        | n      |                                   |     |
|                  |                                            |                               | Test hole depth:            | 2.5 r        |        |                                   |     |
| where            | q = water flow rate (m3/sec)               |                               | Groundwater depth:          |              |        |                                   |     |
|                  | Hc = constant water level head (m)         |                               | Soakage Length:             | 2.5          |        |                                   |     |
|                  | d = D = test hole diameter (m)             |                               | Soakhole water level:       |              | nbgl   |                                   |     |
|                  | m = transformation ratio = 1               |                               | Average constant head (Hc): | 1.25 r       |        |                                   |     |
|                  | L = average soakage length (m)             |                               |                             |              |        |                                   |     |
|                  |                                            |                               | Water volume:               | 20           | itres  | (Reference Container Capacity)    |     |
|                  |                                            |                               | Time:                       | 366 s        | sec    | (Average after 6 consecutive test | ts) |
|                  |                                            |                               | Flow rate (q):              | 5.5E-05 r    | n3/sec |                                   | ,   |
|                  |                                            |                               |                             |              |        |                                   |     |
|                  |                                            |                               | Hydraulic Conductivity (k): | 1.1E-05 r    | m/sec  |                                   |     |
|                  |                                            |                               |                             |              |        |                                   |     |
|                  |                                            |                               |                             |              |        |                                   |     |
|                  |                                            |                               | SOAKHOLE S08                |              |        |                                   |     |
|                  |                                            |                               | Test Hole diameter:         | 0.1 r        |        |                                   |     |
|                  |                                            |                               | Test hole depth:            | 2.5 r        | n      |                                   |     |
|                  |                                            |                               | Groundwater depth:          | 3.4          |        |                                   |     |
|                  |                                            |                               | Soakage Length:             | 2.5          |        |                                   |     |
|                  |                                            |                               | Soakhole water level:       |              | nbgl   |                                   |     |
|                  |                                            |                               | Average constant head (Hc): | 1.25 r       | n      |                                   |     |
|                  |                                            |                               | Water volume:               | - 20         | itres  | (Reference Container Capacity)    |     |
|                  |                                            |                               |                             |              |        |                                   | (a) |
|                  |                                            |                               | Time:                       | 57.1833 s    |        | (Average after 6 consecutive test | is) |
|                  |                                            |                               | Flow rate (q):              | 3.5E-04 r    | n3/sec |                                   |     |
|                  |                                            |                               | Hydraulic Conductivity (k): | 6.97E-05 r   | m/sec  |                                   |     |
|                  |                                            |                               | ,                           |              |        |                                   |     |

## SOIL HYDRAULIC CONDUCTIVITY DETERMINATION (CONSTANT HEAD METHOD)

### HVORSLEV CASE G:

Soakage out base and sides of test hole with no overlying restrictive layer

| oounug  |                                                       |                       | g resultave layer        |                                       |                |                                     |
|---------|-------------------------------------------------------|-----------------------|--------------------------|---------------------------------------|----------------|-------------------------------------|
| Hydraul | ic conductivity (k) =                                 | <u>q x ln [(m.L/D</u> | ) + (1 + (m.L/D)^2)^0.5] | SOAKHOLE S01                          |                |                                     |
|         |                                                       |                       | 2.PI.L.Hc                | Test Hole diameter:                   | 0.1 m          |                                     |
|         | n – watan flaw nata (m2)a                             |                       |                          | Test hole depth:                      | 4 m            |                                     |
| where   | q = water flow rate (m3/s<br>Hc = constant water leve |                       |                          | Groundwater depth:<br>Soakage Length: | 2.56           |                                     |
|         | d = D = test hole diamete                             |                       |                          | Soakhole water level:                 | 1.4 mbgl       |                                     |
|         | m = transformation ratio                              |                       |                          | Average constant head (Hc):           | 1.28 m         |                                     |
|         | L = average soakage len                               |                       |                          | ,                                     |                |                                     |
|         | 5 5                                                   | 5 ( )                 |                          | Water volume:                         | 20 litres      | (Reference Container Capacity)      |
|         |                                                       |                       |                          | Time:                                 | 87.483 sec     | (Average after 6 consecutive tests) |
|         |                                                       |                       |                          | Flow rate (q):                        | 2.3E-04 m3/sec |                                     |
|         |                                                       |                       |                          | Hydraulic Conductivity (k):           | 4.4E-05 m/sec  |                                     |
|         |                                                       |                       |                          | SOAKHOLE S07                          |                |                                     |
|         |                                                       |                       |                          | Test Hole diameter:                   | 0.1 m          |                                     |
|         |                                                       |                       |                          | Test hole depth:                      | 4 m            |                                     |
|         |                                                       |                       |                          | Groundwater depth:                    |                |                                     |
|         |                                                       |                       |                          | Soakage Length:                       | 2.56           |                                     |
|         |                                                       |                       |                          | Soakhole water level:                 | 1.4 mbgl       |                                     |
|         |                                                       |                       |                          | Average constant head (Hc):           | 1.28 m         |                                     |
|         |                                                       |                       |                          | Water volume:                         | 20 litres      | (Reference Container Capacity)      |
|         |                                                       |                       |                          | Time:                                 | 93.02 sec      | (Average after 6 consecutive tests) |
|         |                                                       |                       |                          | Flow rate (q):                        | 2.2E-04 m3/sec |                                     |
|         |                                                       |                       |                          | Hydraulic Conductivity (k):           | 4.11E-05 m/sec |                                     |
|         |                                                       |                       |                          | SOAKHOLE S11                          |                |                                     |
|         |                                                       |                       |                          | Test Hole diameter:                   | 0.1 m          |                                     |
|         |                                                       |                       |                          | Test hole depth:                      | 4 m            |                                     |
|         |                                                       |                       |                          | Groundwater depth:                    |                |                                     |
|         |                                                       |                       |                          | Soakage Length:                       | 2.6            |                                     |
|         |                                                       |                       |                          | Soakhole water level:                 | 1.4 mbgl       |                                     |
|         |                                                       |                       |                          | Average constant head (Hc):           | 1.3 m          |                                     |
|         |                                                       |                       |                          | Water volume:                         | 20 litres      | (Reference Container Capacity)      |
|         |                                                       |                       |                          | Time:                                 | 101.126 sec    | (Average after 6 consecutive tests) |
|         |                                                       |                       |                          | Flow rate (q):                        | 2.0E-04 m3/sec |                                     |
|         |                                                       |                       |                          | Hydraulic Conductivity (k):           | 3.68E-05 m/sec |                                     |
|         |                                                       |                       |                          |                                       |                |                                     |

**Appendix H – SWWM model catchment characteristics** 





|           |                 | Ву       | SD/JL     |
|-----------|-----------------|----------|-----------|
| Client :  |                 | Checked  | CF        |
|           |                 | Approved |           |
| Droject   | MAEA INDUSTRIAL | Revision | Α         |
| Project : | DEVELOPMENT     | Date     | 5/10/2021 |

## Calcutta Industrial Zone Catchment Characteristics

|                                             |                |          |                  |                   |                 |                               |       |                       |                     |                   |                    |                  | Infilt         | tration (Hor   | ton)            |
|---------------------------------------------|----------------|----------|------------------|-------------------|-----------------|-------------------------------|-------|-----------------------|---------------------|-------------------|--------------------|------------------|----------------|----------------|-----------------|
| ID                                          | А              | А        | A <sub>imp</sub> | A <sub>perv</sub> | L <sub>fp</sub> | Width<br>(A/L <sub>fp</sub> ) | Slope | Percent<br>Impervious | n <sub>impwev</sub> | n <sub>perv</sub> | D-Store<br>Imperv. | D-Store<br>Perv. | f <sub>i</sub> | f <sub>o</sub> | Decay<br>Const. |
|                                             | m <sup>2</sup> | ha       | m²               | m²                | m               | m                             | %     | %                     |                     |                   | mm                 | mm               |                |                |                 |
| SWC01B                                      | 153424         | 15.34238 | 138081.4         | 15342.38          | 670             | 229.0                         | 0.5   | 90.0                  | 0.015               | 0.15              | 2                  | 5                | 33.87          | 6.6            | 4               |
| SWC02A                                      | 166475         | 16.6475  | 149827.5         | 16647.49          | 730             | 228.0                         | 0.5   | 90.0                  | 0.015               | 0.15              | 2                  | 5                | 33.87          | 6.6            | 4               |
| SWC02B                                      | 82134          | 8.213361 | 73920.25         | 8213.361          | 550             | 149.3                         | 0.5   | 90.0                  | 0.015               | 0.15              | 2                  | 5                | 33.87          | 6.6            | 4               |
| Offsite Catchment                           | 1097841        | 109.7841 | 21956.82         | 1075884           | 2480            | 442.7                         | 0.1   | 2.0                   | 0.015               | 0.15              | 2                  | 5                | 33.87          | 6.6            | 4               |
| Mangawhero_Existing_Conditions <sup>1</sup> | 49305433       | 4930.543 | 2465272          | 46840161          | 28430           | 1734.3                        | 0.1   | 5.0                   | 0.015               | 0.15              | 2                  | 5                | 33.87          | 6.6            | 4               |
| Mangawhero_Extended <sup>2</sup>            | 50643543       | 5064.354 | 2704365          | 47939178          | 28420           | 1782.0                        | 0.1   | 5.3                   | 0.015               | 0.15              | 2                  | 5                | 33.87          | 6.6            | 4               |
| Mangawhero_Trimmed <sup>3</sup>             | 49131553       | 4913.155 | 2456578          | 46674975          | 28420           | 1728.8                        | 0.1   | 5.0                   | 0.015               | 0.15              | 2                  | 5                | 33.87          | 6.6            | 4               |

<sup>1</sup> Mangawhero\_Existing Conditions refers to Mangawhero Catchment in current conditions, as delineated based on LIDAR, LINZ elevation data, and aerial photographic information.

<sup>2</sup> Mangawhero\_Extended refers to the extended catchment with the attachment of the additional off-site catchment and sub-catchment of Calcutta Farms Industrial Area that currently drains across SH24 and discharges into Mangawhero Stream approximately 500 meters downstream of SH24 bridge

<sup>3</sup> Mangawhero\_Trimmed refers to Mangawhero Stream Catchment without the Calcutta Farms Industrial Area sub-catchment that currently drains into the stream upstream of the SH24 bridge.

GLOSSARY:

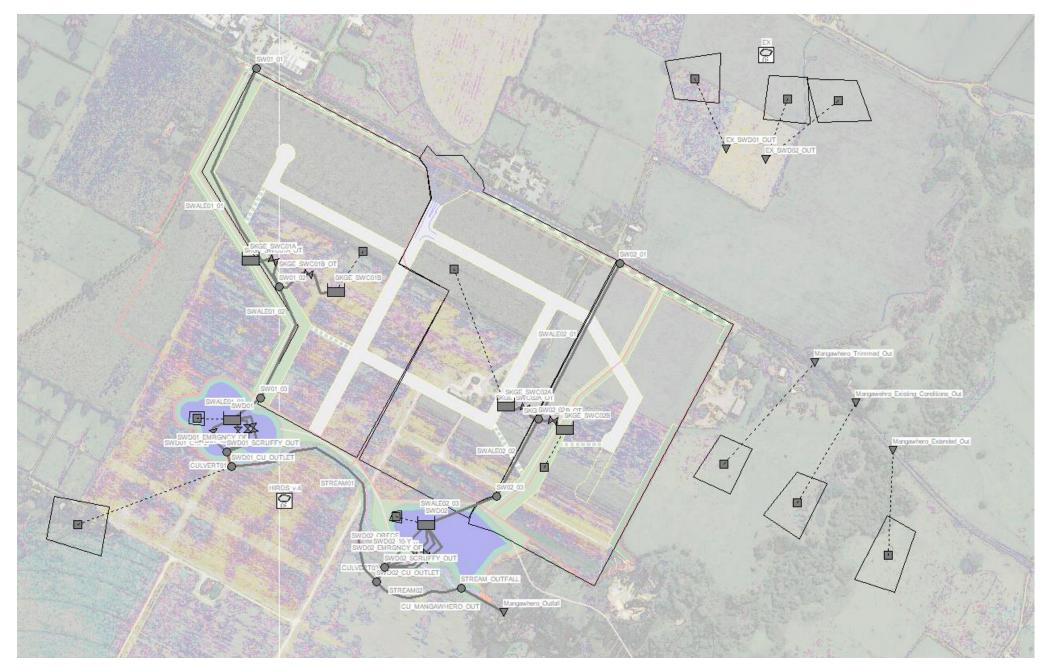
A: Catchment area $n_{imperv}$ : Manning Number for impervious area $A_{imp}$ : Impervious area of a catchmen  $n_{perv}$ : Manning Number for pervious area $A_{per}$ : Pervious area of a catchmentD-Store Imperv.: Depth of depression storage on impervious area $L_{fp}$ : Length of overland flowD-Store Perv.: Depth of depression storage on pervious areaSlope: Average surface slope $f_i$ :Maximum rate on the Horton infiltration curve

 $f_o$ :Minimum rate on the Horton infiltration curve Decay Const.: Decay constant for the Horton infiltration curve Appendix I – Soakage sizing calculations



| Catchment                      | SC01    |                | Soakage Device Sizing Calculations                                        |
|--------------------------------|---------|----------------|---------------------------------------------------------------------------|
| Parameter                      | Value   | Unit           | Comment/Calculation formula                                               |
| A=                             | 67,253  | m <sup>2</sup> | input                                                                     |
| d <sub>10y/1h</sub> =          |         | mm             | input                                                                     |
| Imperviousness                 | 90%     | pct            | input                                                                     |
| Perviousness                   | 10%     | pct            | input                                                                     |
| Pervious/porous paving:        | 0%      | pct            | input                                                                     |
| A <sub>I</sub> =               | 60527.7 | m²             | A*Impervioussness                                                         |
| A <sub>P</sub> =               | 6725.3  | m²             | A*Pervioussness                                                           |
| A <sub>PP</sub> =              | 0       | m <sup>2</sup> | A*Pervious/porous paving                                                  |
| D <sub>store-imperv</sub> =    |         | mm             | Depth of depression storage on the impervious portion of the subcatchment |
| D <sub>store-perv</sub> =      | 5       | mm             |                                                                           |
| % Zero-imperv                  | 75%     | mm             | Percent of the impervious area with no depression storage                 |
| A <sub>T</sub> =               | 62545.3 | m <sup>2</sup> | A <sub>1</sub> +0.3*A <sub>P</sub> +0.3*A <sub>PP</sub>                   |
| d <sub>10y/1h, Design</sub> =  | 9.5     | mm             | d10y/1h-[D <sub>store-imperv</sub> *(100-%Zero-imperv)]                   |
| V <sub>SOAK</sub> =            | 594.18  | m³             | A <sub>T</sub> *D <sub>10y/1h, Design</sub>                               |
| Voids Ratio =                  | 0.38    | -              | input                                                                     |
| V <sub>SOAKAGE_TRENCH</sub> =  | 1563.63 | m³             | V <sub>SOAK</sub> /(Voids Ratio)                                          |
| d <sub>Trench</sub> =          | 1.5     | m              | Input                                                                     |
| A <sub>SOAKAGE_TRENCH</sub> =  | 1042.42 |                | V <sub>SOAKAGE_TRENCH</sub> /d <sub>TRENCH</sub>                          |
| A <sub>SWMM, required</sub> =  | 396.12  | m <sup>2</sup> | V <sub>SOAK</sub> /d <sub>Trench</sub>                                    |
| A <sub>SWMM</sub> , provided = | 420     |                | input                                                                     |

| Catchment                      | SC02    |                | Soakage Device Sizing Calculations                                        |
|--------------------------------|---------|----------------|---------------------------------------------------------------------------|
| Parameter                      | Value   | Unit           | Comment/Calculation formula                                               |
| A=                             | 153,424 | m <sup>2</sup> | input                                                                     |
| d <sub>10y/1h</sub> =          | 10      | mm             | input                                                                     |
| Imperviousness                 | 90%     | pct            | input                                                                     |
| Perviousness                   | 10%     | pct            | input                                                                     |
| Pervious/porous paving:        | 0%      | pct            | input                                                                     |
| A <sub>I</sub> =               | 138081  | m²             | A*Impervioussness                                                         |
| A <sub>P</sub> =               | 15342.4 | m²             | A*Pervioussness                                                           |
| A <sub>pp</sub> =              | 0       | m <sup>2</sup> | A*Pervious/porous paving                                                  |
| D <sub>store-imperv</sub> =    |         | mm             | Depth of depression storage on the impervious portion of the subcatchment |
| D <sub>store-perv</sub> =      | 5       | mm             | Depth of depression storage on the pervious portion of the subcatchment   |
| % Zero-imperv                  | 75%     | mm             | Percent of the impervious area with no depression storage                 |
| A <sub>T</sub> =               | 142684  | m²             | A <sub>1</sub> +0.3*A <sub>P</sub> +0.3*A <sub>PP</sub>                   |
| d <sub>10y/1h, Design</sub> =  | 9.5     | mm             | d10y/1h-[D store-imperv *(100-%Zero-imperv)]                              |
| V <sub>SOAK</sub> =            | 1355.5  | m³             | A <sub>T</sub> *D <sub>10y/1h, Design</sub>                               |
| Voids Ratio =                  | 0.38    | -              | input                                                                     |
| V <sub>SOAKAGE_TRENCH</sub> =  | 3567.11 | m³             | V <sub>SOAK</sub> /(Voids Ratio)                                          |
| d <sub>Trench</sub> =          | 1.5     |                | Input                                                                     |
| A <sub>SOAKAGE_TRENCH</sub> =  | 2378.07 | m²             | V <sub>SOAKAGE_TRENCH</sub> /d <sub>TRENCH</sub>                          |
| A <sub>SWMM, required</sub> =  | 903.667 | m <sup>2</sup> | V <sub>SOAK</sub> /d <sub>Trench</sub>                                    |
| A <sub>SWMM</sub> , provided = | 950     | m              | input                                                                     |


| Catchment                      | SC03    |                | Soakage Device Sizing Calculations                                        |
|--------------------------------|---------|----------------|---------------------------------------------------------------------------|
| Parameter                      | Value   | Unit           | Comment/Calculation formula                                               |
| A=                             | 166,475 | m <sup>2</sup> | input                                                                     |
| d <sub>10y/1h</sub> =          | 10      | mm             | input                                                                     |
| Imperviousness                 | 90%     | pct            | input                                                                     |
| Perviousness                   | 10%     | pct            | input                                                                     |
| Pervious/porous paving:        | 0%      | pct            | input                                                                     |
| A <sub>i</sub> =               | 149827  | m²             | A*Impervioussness                                                         |
| A <sub>P</sub> =               | 16647.5 | m²             | A*Pervioussness                                                           |
| A <sub>pp</sub> =              | 0       | m <sup>2</sup> | A*Pervious/porous paving                                                  |
| D <sub>store-imperv</sub> =    |         | mm             | Depth of depression storage on the impervious portion of the subcatchment |
| D <sub>store-perv</sub> =      | 5       | mm             | Depth of depression storage on the pervious portion of the subcatchment   |
| % Zero-imperv                  | 75%     | mm             | Percent of the impervious area with no depression storage                 |
| A <sub>T</sub> =               | 154822  | m²             | A <sub>1</sub> +0.3*A <sub>P</sub> +0.3*A <sub>PP</sub>                   |
| d <sub>10y/1h, Design</sub> =  | 9.5     | mm             | d10y/1h-[D <sub>store-imperv</sub> *(100-%Zero-imperv)]                   |
| V <sub>SOAK</sub> =            | 1470.81 | m³             | A <sub>T</sub> *D <sub>10y/1h</sub> , Design                              |
| Voids Ratio =                  | 0.38    | -              | input                                                                     |
| V <sub>SOAKAGE_TRENCH</sub> =  | 3870.55 | m³             | V <sub>SOAK</sub> /(Voids Ratio)                                          |
| d <sub>Trench</sub> =          | 1.5     |                | Input                                                                     |
| A <sub>SOAKAGE_TRENCH</sub> =  | 2580.37 | m²             | V <sub>SOAKAGE_TRENCH</sub> /d <sub>TRENCH</sub>                          |
| A <sub>SWMM, required</sub> =  | 980.54  | m <sup>2</sup> | V <sub>SOAK</sub> /d <sub>Trench</sub>                                    |
| A <sub>SWMM</sub> , provided = | 1000    |                | input                                                                     |

| Catchment                      | SC04    |                | Soakage Device Sizing Calculations                                        |
|--------------------------------|---------|----------------|---------------------------------------------------------------------------|
| Parameter                      | Value   | Unit           | Comment/Calculation formula                                               |
| A=                             | 82,134  | m <sup>2</sup> | input                                                                     |
| d <sub>10y/1h</sub> =          |         | mm             | input                                                                     |
| Imperviousness                 | 90%     | pct            | input                                                                     |
| Perviousness                   | 10%     | pct            | input                                                                     |
| Pervious/porous paving:        | 0%      | pct            | input                                                                     |
| A <sub>I</sub> =               | 73920.2 | m²             | A*Impervioussness                                                         |
| A <sub>P</sub> =               | 8213.36 | m²             | A*Pervioussness                                                           |
| A <sub>PP</sub> =              | 0       | m <sup>2</sup> | A*Pervious/porous paving                                                  |
| D <sub>store-imperv</sub> =    |         | mm             | Depth of depression storage on the impervious portion of the subcatchment |
| D <sub>store-perv</sub> =      | 5       | mm             | Depth of depression storage on the pervious portion of the subcatchment   |
| % Zero-imperv                  |         | mm             | Percent of the impervious area with no depression storage                 |
| A <sub>T</sub> =               | 76384.3 | m <sup>2</sup> | A , +0.3*A <sub>P</sub> +0.3*A <sub>PP</sub>                              |
| d <sub>10y/1h, Design</sub> =  | 9.5     | mm             | d10y/1h-[D <sub>store-imperv</sub> *(100-%Zero-imperv)]                   |
| V <sub>SOAK</sub> =            | 725.65  | m³             | A <sub>T</sub> *D <sub>10y/1h</sub> , Design                              |
| Voids Ratio =                  | 0.38    | -              | input                                                                     |
| V <sub>SOAKAGE_TRENCH</sub> =  | 1909.61 | m³             | V <sub>SOAK</sub> /(Voids Ratio)                                          |
| d <sub>Trench</sub> =          | 1.5     | m              | Input                                                                     |
| A <sub>SOAKAGE_TRENCH</sub> =  | 1273.07 |                | V <sub>SOAKAGE_TRENCH</sub> /d <sub>TRENCH</sub>                          |
| A <sub>SWMM, required</sub> =  | 483.767 | m <sup>2</sup> | V <sub>SOAK</sub> /d <sub>Trench</sub>                                    |
| A <sub>SWMM</sub> , provided = | 500     |                | input                                                                     |

Appendix J – SWMM modelling outputs



## SWMM MODEL LAYOUT



## WATER QUALITY STORM: 1/3<sup>RD</sup> OF THE 2-YEAR/24-HOUR ARI WITH CLIMATE CHANGE

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.2 (Build 5.2.0)

| * * * * * * * * * * * * * * * |            |          |
|-------------------------------|------------|----------|
| Analysis Options              |            |          |
| * * * * * * * * * * * * * * * |            |          |
| Flow Units                    | CMS        |          |
| Process Models:               |            |          |
| Rainfall/Runoff               | YES        |          |
| RDII                          | NO         |          |
| Snowmelt                      | NO         |          |
| Groundwater                   | NO         |          |
| Flow Routing                  | YES        |          |
| Ponding Allowed               | NO         |          |
| Water Quality                 | NO         |          |
| Infiltration Method           | HORTON     |          |
| Flow Routing Method           | DYNWAVE    |          |
| Surcharge Method              | EXTRAN     |          |
| Starting Date                 | 10/06/2021 | 00:00:00 |
| Ending Date                   | 10/09/2021 | 00:00:00 |
| Antecedent Dry Days           | 0.0        |          |
| Report Time Step              | 00:05:00   |          |
| Wet Time Step                 |            |          |
| Dry Time Step                 | 00:00:01   |          |
| Routing Time Step             | 0.50 sec   |          |
| Variable Time Step            | YES        |          |
| Maximum Trials                | 20         |          |
| Number of Threads             | 1          |          |
| Head Tolerance                | 0.001500 m |          |
|                               |            |          |

| <pre>************************************</pre>                                                                                                                                                                                    | Volume<br>hectare-m<br>475.180<br>0.000<br>449.833<br>23.876<br>1.471<br>0.000                    | Depth<br>mm<br>31.462<br>0.000<br>29.783<br>1.581<br>0.097                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| -<br>******                                                                                                                                                                                                                        | Volume                                                                                            | Volume                                                                                     |
| Flow Routing Continuity                                                                                                                                                                                                            | hectare-m                                                                                         | 10^6 ltr                                                                                   |
| Dry Weather Inflow<br>Wet Weather Inflow<br>Groundwater Inflow<br>RDII Inflow<br>External Inflow<br>Flooding Loss<br>Evaporation Loss<br>Exfiltration Loss<br>Initial Stored Volume<br>Final Stored Volume<br>Continuity Error (%) | 0.000<br>23.876<br>0.000<br>0.000<br>22.894<br>0.000<br>0.000<br>0.948<br>0.000<br>0.032<br>0.004 | 0.000<br>238.760<br>0.000<br>0.000<br>228.947<br>0.000<br>0.000<br>9.481<br>0.000<br>0.323 |
| **************************************                                                                                                                                                                                             |                                                                                                   |                                                                                            |

None

Highest Flow Instability Indexes All links are stable.

\*\*\*\*\* Most Frequent Nonconverging Nodes Convergence obtained at all time steps.

| **************************************                                                                                                                                        |                                         |                                              |         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------|---------|
| Minimum Time Step<br>Average Time Step<br>Maximum Time Step<br>% of Time in Steady State<br>Average Iterations per Step<br>% of Steps Not Converging<br>Time Step Frequencies | ::::::::::::::::::::::::::::::::::::::: | 0.45<br>0.50<br>0.50<br>0.00<br>2.00<br>0.00 | sec     |
| 0.500 - 0.315 sec<br>0.315 - 0.199 sec                                                                                                                                        | ::                                      | 100.00<br>0.00<br>0.00<br>0.00<br>0.00       | olo olo |

Subcatchment Runoff Summary

| <br>   |       |       |       |        |        |        |        |        |        |
|--------|-------|-------|-------|--------|--------|--------|--------|--------|--------|
| Total  | Total | Total | Total | Imperv | Perv   | Total  | Total  | Peak   | Runoff |
| Precip | Runon | Evap  | Infil | Runoff | Runoff | Runoff | Runoff | Runoff | Coeff  |

| Subcatchment           | mm       | mm    | mm   | mm    | mm    | mm   | mm    | 10^6 ltr | CMS   |       |
|------------------------|----------|-------|------|-------|-------|------|-------|----------|-------|-------|
| C_W01                  | 31.46    | 0.00  | 0.00 | 15.73 | 14.73 | 0.00 | 14.73 | 0.35     | 0.04  | 0.468 |
| C_W02                  | 31.46    | 0.00  | 0.00 | 15.73 | 14.73 | 0.00 | 14.73 | 0.42     | 0.05  | 0.468 |
| EX SWC01B              | 31.46    | 0.00  | 0.00 | 29.89 | 1.50  | 0.00 | 1.50  | 0.23     | 0.04  | 0.048 |
| EX SWC02A              | 31.46    | 0.00  | 0.00 | 29.89 | 1.50  | 0.00 | 1.50  | 0.25     | 0.04  | 0.048 |
| EX SWC02B              | 31.46    | 0.00  | 0.00 | 29.89 | 1.50  | 0.00 | 1.50  | 0.12     | 0.02  | 0.048 |
| Mangawhero Existing Co | nditions | 31.46 | 0.00 | 0.00  | 29.89 | 1.48 | 0.00  | 1.48     | 73.05 | 2.30  |
| 0.047                  |          |       |      |       |       |      |       |          |       |       |
| Mangawhero Extended    | 31.46    | 0.00  | 0.00 | 29.78 | 1.58  | 0.00 | 1.58  | 80.05    | 2.44  | 0.050 |
| Mangawhero Trimmed     | 31.46    | 0.00  | 0.00 | 29.89 | 1.48  | 0.00 | 1.48  | 72.79    | 2.29  | 0.047 |
| Off-Site Catchment     | 31.46    | 0.00  | 0.00 | 30.83 | 0.60  | 0.00 | 0.60  | 0.66     | 0.09  | 0.019 |
| SWC01B                 | 31.46    | 0.00  | 0.00 | 3.15  | 26.94 | 0.00 | 26.94 | 4.13     | 0.27  | 0.856 |
| SWC02A                 | 31.46    | 0.00  | 0.00 | 3.15  | 26.93 | 0.00 | 26.93 | 4.48     | 0.28  | 0.856 |
| SWC02B                 | 31.46    | 0.00  | 0.00 | 3.15  | 26.94 | 0.00 | 26.94 | 2.21     | 0.16  | 0.856 |

\*\*\*\*\*

Node Depth Summary

|                                                         |              | Average N  | laximum | Maximum | Time | of Max  | Reported  |
|---------------------------------------------------------|--------------|------------|---------|---------|------|---------|-----------|
|                                                         |              | Depth      | Depth   | HGL     | Occi | irrence | Max Depth |
| Node                                                    | Туре         | Meters     | Meters  | Meters  | days | hr:min  | Meters    |
| STREAM OUTFALL                                          | JUNCTION     | 0.03       | 0.08    | 54.37   | 0    | 12:42   | 0.08      |
| SW01_01                                                 | JUNCTION     | 0.00       | 0.00    | 57.00   | 0    | 00:00   | 0.00      |
| SW01 02                                                 | JUNCTION     | 0.01       | 0.22    | 56.62   | 0    | 14:22   | 0.22      |
| sw01_02<br>sw01_03                                      | JUNCTION     | 0.01       | 0.19    | 56.29   | 0    | 14:31   | 0.19      |
| SW02_01                                                 | JUNCTION     | 0.00       | 0.00    | 58.50   | 0    | 00:00   | 0.00      |
| SW02_01<br>SW02_02<br>SW02_03                           | JUNCTION     | 0.02       | 0.29    | 58.19   | 0    | 14:10   | 0.29      |
| SW02_03                                                 | JUNCTION     | 0.02       | 0.24    | 57.84   | 0    | 14:16   | 0.24      |
| SWD01_CU_OUTLET<br>SWD01_SCRUFFY_OUT<br>SWD02_CU_OUTLET | JUNCTION     | 0.05       | 0.22    | 55.62   | 0    | 12:17   | 0.22      |
| SWD01 SCRUFFY OUT                                       | JUNCTION     | 0.03       | 0.12    | 55.62   | 0    | 12:18   | 0.12      |
| SWD02_CU_OUTLET                                         | JUNCTION     | 0.10       | 0.25    | 54.90   | 0    | 12:39   | 0.25      |
| SWD02_SCRUFFY_OUT<br>EX SWD01 OUT                       | JUNCTION     | 0.02       | 0.05    | 55.25   | 0    | 19:22   | 0.05      |
| EX_SWD01_OUT                                            | OUTFALL      | 0.00       | 0.00    | 55.50   | 0    | 00:00   | 0.00      |
| EX_SWD02_OUT                                            | OUTFALL      | 0.00       | 0.00    | 54.65   | 0    | 00:00   | 0.00      |
| Mangawehro_Existing                                     | _Conditions_ | Out OUTFAI | L (     | 0.00    | 0.00 | 41.45   | 0 00:00   |
| Mangawhero_Extended                                     | _Out OUTFALL | . 0.00     | 0.0     | 00 41.  | 45   | 0 00:00 | 0.00      |
| Mangawhero_Outfall<br>Mangawhero Trimmed                | OUTFALL      | 0.03       | 0.08    | 52.08   | 0    | 12:42   | 0.08      |
| Mangawhero_Trimmed_                                     | Out OUTFALL  | 0.00       | 0.0     | 0 41.4  | 5    | 0 00:00 | 0.00      |
| SKGE_SWC01A                                             | STORAGE      | 0.00       | 0.00    | 56.00   | 0    | 00:00   | 0.00      |
| SKGE_SWC01B<br>SKGE_SWC02A                              | STORAGE      | 0.40       | 1.52    | 57.52   | 0    | 14:07   | 1.52      |
| SKGE_SWC02A                                             | STORAGE      | 0.40       | 1.53    | 59.53   | 0    | 14:00   | 1.53      |
| SKGE_SWC02B<br>SWD01                                    | STORAGE      | 0.40       | 1.52    | 59.52   | 0    | 13:43   | 1.52      |
|                                                         |              |            |         | 56.08   | 0    | 19:39   | 0.08      |
| SWD02                                                   | STORAGE      | 0.04       | 0.11    | 57.11   | 0    | 19:21   | 0.11      |

Node Inflow Summary

|                                          |             | Maximum    | Maximum |      |         | Lateral  | Total    | Flow                                                |  |
|------------------------------------------|-------------|------------|---------|------|---------|----------|----------|-----------------------------------------------------|--|
|                                          |             | Lateral    | Total   | Time | of Max  | Inflow   | Inflow   | Balance                                             |  |
|                                          |             | Inflow     | Inflow  | 0cci | irrence | Volume   | Volume   | Error                                               |  |
| Node                                     | Туре        | CMS        | CMS     | days | hr:min  | 10^6 ltr | 10^6 ltr | Percent                                             |  |
| STREAM OUTFALL                           | JUNCTION    | 0 000      | 0 0 4 3 | 0    | 12.40   | 0        | 2.45     | 0 070                                               |  |
| SW01_01                                  | JUNCTION    | 0.000      | 0.000   | 0    | 00:00   | 0        | 0        | 0.000 ltr                                           |  |
| SW01_02                                  | JUNCTION    | 0.000      | 0.065   | 0    | 14:07   | 0        | 0.587    | -0.278                                              |  |
| SW01 03                                  | JUNCTION    | 0.000      | 0.060   | 0    | 14:26   | 0        | 0.579    | 0.284                                               |  |
| SW02_01<br>SW02_02                       | JUNCTION    | 0.000      | 0.000   | 0    | 00:00   | 0        | 0        | 0.000 ltr<br>-0.278<br>0.284<br>0.000 ltr<br>-0.196 |  |
| SW02_02                                  | JUNCTION    | 0.000      | 0.114   | 0    | 13:58   | 0        | 1.07     | -0.196                                              |  |
| SW02_03                                  | JUNCTION    | 0.000      | 0.106   | 0    | 14:12   | 0        | 1.06     | 0.199                                               |  |
| SWD01 CU OUTLET                          | JUNCTION    | 0.085      | 0.085   | 0    | 12:09   | 0.658    | 1.45     | 0.049                                               |  |
|                                          |             | 0.000      | 0.010   | 0    | 19:39   | 0        | 0.789    | 0.007                                               |  |
| SWD02 CU OUTLET                          | JUNCTION    | 0.000      | 0.065   | 0    | 12:20   | 0        | 2.56     | 0.639                                               |  |
| SWD02 SCRUFFY OUT                        | JUNCTION    | 0.000      | 0.019   | 0    | 19:21   | 0        | 1.31     | 0.004                                               |  |
| EX SWD01 OUT                             | OUTFALL     | 0.039      | 0.039   | 0    | 12:09   | 0.23     | 0.23     | 0.000                                               |  |
| EX_SWD02_OUT                             | OUTFALL     | 0.064      | 0.064   | 0    | 12:09   | 0.372    | 0.372    | 0.000                                               |  |
| Mangawehro Existing                      | Conditions  | Out OUTFAL | L 2     | .300 | 2.300   | 0 12:39  | 73.1     | 73.1                                                |  |
| Mangawhero_Extended                      | Out OUTFALI | 2.44       | 1 2.4   | 41   | 0 12:39 | 80.1     | 80.1     | 0.000                                               |  |
| Mangawhero Outfall<br>Mangawhero Trimmed | OUTFALL     | 0.000      | 0.043   | 0    | 12:42   | 0        | 2.45     | 0.000                                               |  |
| Mangawhero_Trimmed_                      | Out OUTFALL | 2.292      | 2.29    | 2    | 0 12:39 | 72.8     | 72.8     | 0.000                                               |  |
| SKGE_SWC01A                              | STORAGE     | 0.000      | 0.000   | 0    | 00:00   | 0        | 0        | 0.000 ltr                                           |  |
| SKGE SWC01B                              | STORAGE     | 0.272      | 0.272   | 0    | 12:14   | 4.13     | 4.13     | -0.000                                              |  |
| SKGE_SWC02A<br>SKGE_SWC02B               | STORAGE     | 0.285      | 0.285   | 0    | 12:14   | 4.48     | 4.48     | -0.000                                              |  |
| SKGE_SWC02B                              | STORAGE     | 0.157      | 0.157   | 0    | 12:09   | 2.21     | 2.21     |                                                     |  |
| SWD01                                    |             |            |         |      |         |          |          | 0.002                                               |  |
| SWD02                                    | STORAGE     | 0.051      | 0.113   | 0    | 14:16   | 0.423    | 1.48     | 0.001                                               |  |

\*\*\*\*\* Node Surcharge Summary

No nodes were surcharged.

\*\*\*\*\* Node Flooding Summary \*\*\*\*\*\*

No nodes were flooded.

\*\*\*\*\* Storage Volume Summary

| Storage Unit | Average<br>Volume<br>1000 m3 | Avg<br>Pcnt<br>Full | Evap<br>Pcnt<br>Loss | Exfil<br>Pcnt<br>Loss | Maximum<br>Volume<br>1000 m3 | Max<br>Pcnt<br>Full | Time of Max<br>Occurrence<br>days hr:min | Maximum<br>Outflow<br>CMS |
|--------------|------------------------------|---------------------|----------------------|-----------------------|------------------------------|---------------------|------------------------------------------|---------------------------|
| SKGE SWC01A  | 0.000                        | 0                   | 0                    | 0                     | 0.000                        | 0                   | 0 00:00                                  | 0.000                     |
| SKGE SWC01B  | 0.377                        | 20                  | 0                    | 86                    | 1.447                        | 76                  | 0 14:07                                  | 0.100                     |
| SKGE SWC02A  | 0.403                        | 20                  | 0                    | 84                    | 1.526                        | 76                  | 0 14:00                                  | 0.116                     |
| SKGE SWC02B  | 0.198                        | 20                  | 0                    | 84                    | 0.759                        | 76                  | 0 13:43                                  | 0.060                     |
| SWD01        | 0.294                        | 1                   | 0                    | 0                     | 0.720                        | 2                   | 0 19:39                                  | 0.010                     |
| SWD02        | 0.411                        | 1                   | 0                    | 0                     | 1.115                        | 2                   | 0 19:21                                  | 0.019                     |

#### \*\*\*\*\*

Outfall Loading Summary

|                     | Flow       | Avg       | Max   | Total    |
|---------------------|------------|-----------|-------|----------|
|                     | Freq       | Flow      | Flow  | Volume   |
| Outfall Node        | Pcnt       | CMS       | CMS   | 10^6 ltr |
|                     |            |           |       |          |
| EX SWD01 OUT        | 35.45      | 0.002     | 0.039 | 0.230    |
| EX SWD02 OUT        | 36.45      | 0.004     | 0.064 | 0.372    |
| Mangawehro Existing | Conditions | Out 99.90 | 0.282 | 2.300    |
| Mangawhero Extended | Out 99.90  | 0.309     | 2.441 | 80.050   |
| Mangawhero Outfall  | 93.51      | 0.010     | 0.043 | 2.451    |
| Mangawhero Trimmed  | Out 99.90  | 0.281     | 2.292 | 72.793   |
|                     |            |           |       |          |
| System              | 77.52      | 0.889     | 7.098 | 228.946  |

\* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \*

Link Flow Summary \*\*\*\*\*\*\*\*\*\*

|                                |         |       |      |        | Maximum |      |       |
|--------------------------------|---------|-------|------|--------|---------|------|-------|
|                                |         |       |      |        | Veloc   |      |       |
| Link                           | Туре    | CMS   | days | hr:min | m/sec   | Flow | Depth |
|                                |         | 0.043 | 0    | 12:42  |         | 0.02 |       |
| CU_MANGAWHERO_OUT<br>CULVERT01 |         | 0.043 |      |        | 0.46    |      |       |
| CULVERT02                      |         | 0.010 |      |        | 0.46    |      |       |
| STREAM01                       |         |       |      | 19:22  | 0.34    | 0.01 | 0.18  |
|                                | CHANNEL |       |      | 12:20  | 0.26    |      |       |
| STREAM02                       | CHANNEL |       |      |        |         |      | 0.03  |
| SWALE01_01                     | CHANNEL |       |      |        | 0.00    |      |       |
|                                | CHANNEL |       | 0    | 14:26  | 0.26    | 0.00 | 0.10  |
| SWALE01_03                     | CHANNEL |       | 0    | 14:31  | 0.45    |      | 0.07  |
| SWALE02_01                     | CHANNEL |       | 0    | 00:00  |         |      | 0.10  |
|                                | CHANNEL |       | 0    | 14:12  |         |      | 0.12  |
| SWALE02_03                     | CHANNEL |       | 0    | 14:16  | 0.54    | 0.00 | 0.09  |
| SWD01_ORFC                     | ORIFICE |       | 0    | 19:39  |         |      | 0.28  |
|                                | ORIFICE |       |      | 19:21  |         |      | 0.34  |
| SKGE_SWC01A_OT                 | WEIR    | 0.000 | 0    | 00:00  |         |      | 0.00  |
| SKGE_SWC01B_OT                 | WEIR    | 0.065 | 0    | 14:07  |         |      | 0.02  |
| SKGE SWC02A OT                 | WEIR    | 0.078 | 0    | 14:00  |         |      | 0.03  |
| SKGE SWC02B OT                 | WEIR    | 0.041 | 0    | 13:43  |         |      | 0.02  |
| SWD01 100-Y                    | WEIR    | 0.000 | 0    | 00:00  |         |      | 0.00  |
| SWD01 10-Y                     | WEIR    | 0.000 | 0    | 00:00  |         |      | 0.00  |
| SWD01 EMRGNCY OF               | WEIR    | 0.000 | 0    | 00:00  |         |      | 0.00  |
| SWD02 100-Y                    | WEIR    | 0.000 | 0    | 00:00  |         |      | 0.00  |
| SWD02 10-Y                     | WEIR    | 0.000 | 0    | 00:00  |         |      | 0.00  |
| SWD02_EMRGNCY_OF               | WEIR    | 0.000 | 0    | 00:00  |         |      | 0.00  |

### Flow Classification Summary

|                   | Adjusted | F    |      | Fract | Fraction of |      | Time in Flow Class |      |      |       |  |
|-------------------|----------|------|------|-------|-------------|------|--------------------|------|------|-------|--|
|                   | /Actual  |      | Up   | Down  | Sub         | Sup  | Up                 | Down | Norm | Inlet |  |
| Conduit           | Length   | Dry  | Dry  | Dry   | Crit        | Crit | Crit               | Crit | Ltd  | Ctrl  |  |
| CU MANGAWHERO OUT | 1.00     | 0.04 | 0.00 | 0.00  | 0.03        | 0.93 | 0.00               | 0.00 | 0.03 | 0.00  |  |
| CULVERT01 -       | 1.00     | 0.00 | 0.05 | 0.00  | 0.69        | 0.25 | 0.00               | 0.00 | 0.58 | 0.00  |  |
| CULVERT02         | 1.00     | 0.01 | 0.04 | 0.00  | 0.95        | 0.00 | 0.00               | 0.00 | 0.95 | 0.00  |  |
| STREAM01          | 1.00     | 0.00 | 0.00 | 0.00  | 1.00        | 0.00 | 0.00               | 0.00 | 0.91 | 0.00  |  |
| STREAM02          | 1.00     | 0.01 | 0.00 | 0.00  | 0.99        | 0.00 | 0.00               | 0.00 | 0.00 | 0.00  |  |
| SWALE01 01        | 1.00     | 0.19 | 0.81 | 0.00  | 0.00        | 0.00 | 0.00               | 0.00 | 0.00 | 0.00  |  |
| SWALE01 02        | 1.00     | 0.19 | 0.00 | 0.00  | 0.81        | 0.00 | 0.00               | 0.00 | 0.76 | 0.00  |  |
| SWALE01 03        | 1.00     | 0.19 | 0.00 | 0.00  | 0.00        | 0.00 | 0.00               | 0.81 | 0.00 | 0.00  |  |
| SWALE02 01        | 1.00     | 0.19 | 0.81 | 0.00  | 0.00        | 0.00 | 0.00               | 0.00 | 0.00 | 0.00  |  |
| SWALE02 02        | 1.00     | 0.19 | 0.00 | 0.00  | 0.81        | 0.00 | 0.00               | 0.00 | 0.74 | 0.00  |  |
| SWALE02_03        | 1.00     | 0.19 | 0.00 | 0.00  | 0.00        | 0.00 | 0.00               | 0.81 | 0.00 | 0.00  |  |

\*\*\*\*\*

Conduit Surcharge Summary \*\*\*\*\*\*\*

No conduits were surcharged.

Analysis begun on: Thu Jun 23 16:26:13 2022 Analysis ended on: Thu Jun 23 16:26:27 2022 Total elapsed time: 00:00:14

73.050

#### 2-YEAR/24-HOUR ARI WITH CLIMATE CHANGE (EXISTING CONDITIONS CATCHMENT CACLUCATIONS CONSIDER NON-CLIMATE CHANGE ADJUSTED RAINFALL)

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.2 (Build 5.2.0)

| * * * * * * * * * * * * * * * * |            |          |
|---------------------------------|------------|----------|
| Analysis Options                |            |          |
| * * * * * * * * * * * * * * *   |            |          |
| Flow Units                      | CMS        |          |
| Process Models:                 |            |          |
| Rainfall/Runoff                 | YES        |          |
| RDII                            | NO         |          |
| Snowmelt                        | NO         |          |
| Groundwater                     | NO         |          |
| Flow Routing                    | YES        |          |
| Ponding Allowed                 | NO         |          |
| Water Quality                   | NO         |          |
| Infiltration Method             | HORTON     |          |
| Flow Routing Method             | DYNWAVE    |          |
| Surcharge Method                | EXTRAN     |          |
| Starting Date                   | 10/06/2021 | 00:00:00 |
| Ending Date                     | 10/09/2021 | 00:00:00 |
| Antecedent Dry Days             | 0.0        |          |
| Report Time Step                | 00:05:00   |          |
| Wet Time Step                   | 00:00:01   |          |
| Dry Time Step                   | 00:00:01   |          |
| Routing Time Step               | 0.50 sec   |          |
| Variable Time Step              | YES        |          |
| Maximum Trials                  | 20         |          |
| Number of Threads               | 1          |          |
| Head Tolerance                  | 0.001500 m |          |
|                                 |            |          |
|                                 |            |          |

| **************************************                                                                                                                                                                                                                             | Volume<br>hectare-m<br><br>1410.353<br>0.000<br>1333.857<br>75.005<br>1.491<br>0.000                                     | Depth<br>mm<br>93.379<br>0.000<br>88.314<br>4.966<br>0.099                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Flow Routing Continuity<br>Flow Routing Continuity<br>Dry Weather Inflow<br>Groundwater Inflow<br>RDII Inflow<br>External Inflow<br>Flooding Loss<br>Evaporation Loss<br>Exfiltration Loss<br>Initial Stored Volume<br>Final Stored Volume<br>Continuity Error (%) | Volume<br>hectare-m<br>0.000<br>75.005<br>0.000<br>0.000<br>0.000<br>73.794<br>0.000<br>1.139<br>0.000<br>1.139<br>0.000 | Volume<br>10^6 ltr<br><br>0.000<br>750.053<br>0.000<br>0.000<br>737.951<br>0.000<br>0.000<br>11.390<br>0.000<br>0.695 |

#### 

| ************************************** |   |        |     |
|----------------------------------------|---|--------|-----|
| Minimum Time Step                      | : | 0.45   | sec |
| Average Time Step                      | : | 0.50   | sec |
| Maximum Time Step                      | : | 0.50   | sec |
| % of Time in Steady State              | : | 0.00   |     |
| Average Iterations per Step            | : | 2.00   |     |
| % of Steps Not Converging              | : | 0.00   |     |
| Time Step Frequencies                  | : |        |     |
| 0.500 - 0.315 sec                      | : | 100.00 | 90  |
| 0.315 - 0.199 sec                      | : | 0.00   | 8   |
| 0.199 - 0.126 sec                      | : | 0.00   | 8   |
| 0.126 - 0.079 sec                      | : | 0.00   | 90  |
| 0.079 - 0.050 sec                      | : | 0.00   | 90  |
|                                        |   |        |     |

### \*\*\*\*\* Subcatchment Runoff Summary

| Subcatchment           | Total<br>Precip<br>mm | Total<br>Runon<br>mm | Total<br>Evap<br>mm | Total<br>Infil<br>mm | Imperv<br>Runoff<br>mm | Perv<br>Runoff<br>mm | Total<br>Runoff<br>mm | Total<br>Runoff<br>10^6 ltr | Peak<br>Runoff<br>CMS | Runoff<br>Coeff |
|------------------------|-----------------------|----------------------|---------------------|----------------------|------------------------|----------------------|-----------------------|-----------------------------|-----------------------|-----------------|
| c_w01                  | 93.41                 | 0.00                 | 0.00                | 42.36                | 45.71                  | 4.34                 | 50.05                 | 1.20                        | 0.17                  | 0.536           |
| C_W02                  | 93.41                 | 0.00                 | 0.00                | 42.48                | 45.71                  | 4.23                 | 49.93                 | 1.43                        | 0.20                  | 0.535           |
| EX SWC01B              | 80.08                 | 0.00                 | 0.00                | 74.34                | 3.93                   | 1.73                 | 5.66                  | 0.87                        | 0.13                  | 0.071           |
| EX SWC02A              | 80.08                 | 0.00                 | 0.00                | 74.45                | 3.93                   | 1.62                 | 5.55                  | 0.92                        | 0.13                  | 0.069           |
| EX SWC02B              | 80.08                 | 0.00                 | 0.00                | 74.08                | 3.93                   | 2.00                 | 5.93                  | 0.49                        | 0.07                  | 0.074           |
| Mangawhero_Existing_Co | onditions             | 93.41                | 0.00                | 0.00                 | 88.67                  | 4.58                 | 0.07                  | 4.65                        | 229.18                | 9.              |
| 050                    |                       |                      |                     |                      |                        |                      |                       |                             |                       |                 |
| Mangawhero_Extended    | 93.41                 | 0.00                 | 0.00                | 88.36                | 4.89                   | 0.07                 | 4.96                  | 251.08                      | 10.47                 | 0.053           |
| Mangawhero Trimmed     | 93.41                 | 0.00                 | 0.00                | 88.67                | 4.58                   | 0.07                 | 4.65                  | 228.38                      | 9.79                  | 0.050           |
| Off-Site Catchment     | 93.41                 | 0.00                 | 0.00                | 90.79                | 1.84                   | 0.75                 | 2.59                  | 2.84                        | 0.34                  | 0.028           |
| SWC01B                 | 93.41                 | 0.00                 | 0.00                | 8.32                 | 82.69                  | 1.02                 | 83.72                 | 12.84                       | 1.14                  | 0.89            |
| SWC02A                 | 93.41                 | 0.00                 | 0.00                | 8.33                 | 82.69                  | 1.01                 | 83.70                 | 13.93                       | 1.19                  | 0.89            |
| SWC02B                 | 93.41                 | 0.00                 | 0.00                | 8.28                 | 82.70                  | 1.06                 | 83.76                 | 6.88                        | 0.66                  | 0.89            |

#### \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \*

Node Depth Summary

|                                  | i              | Average 1  | Maximum | Maximum | Time | of Max  | Reported  |
|----------------------------------|----------------|------------|---------|---------|------|---------|-----------|
|                                  |                |            |         |         |      |         | Max Depth |
| ode                              | Туре           |            |         |         |      |         |           |
| REAM OUTFALL                     |                |            |         |         |      |         | 0.26      |
| 01 01                            | JUNCTION       | 0.00       | 0.10    | 57.10   | 0    | 12:23   | 0.10      |
| 01 02                            | JUNCTION       | 0.06       | 0.70    | 57.10   |      | 12:20   |           |
| 1 03                             | JUNCTION       | 0.13       | 0.54    | 56.64   | 0    | 12:24   | 0.54      |
|                                  | JUNCTION       |            |         |         | 0    | 12:22   | 0.21      |
|                                  |                | 0.08       |         | 58.71   | 0    | 12:20   | 0.81      |
|                                  | JUNCTION       |            |         |         | 0    | 12:24   | 0.61      |
| D01_CU_OUTLET<br>D01_SCRUFFY_OUT | JUNCTION       | 0.15       | 0.43    | 55.83   | 0    | 12:15   | 0.43      |
| 01 SCRUFFY OUT                   | JUNCTION       | 0.10       | 0.33    | 55.83   | 0    | 12:15   | 0.33      |
| D02_CU_OUTLET                    | JUNCTION       | 0.28       | 0.59    | 55.24   | 0    | 14:32   | 0.59      |
| D02_SCRUFFY_OUT<br>SWD01 OUT     | JUNCTION       | 0.07       | 0.17    | 55.37   | 0    | 17:33   | 0.17      |
| SWD01 OUT                        | OUTFALL        | 0.00       | 0.00    | 55.50   | 0    | 00:00   | 0.00      |
| SWD02 OUT                        | OUTFALL        | 0.00       | 0.00    | 54.65   | 0    | 00:00   | 0.00      |
| ngawehro Existin                 | g Conditions ( | Out OUTFAI | LL O    | .00     | 0.00 | 41.45   | 0 00:00   |
| ngawhero_Extende                 | d Out OUTFALL  | 0.00       | D.O     | 0 41.   | 45   | 0 00:00 | 0.00      |
| ngawhero Outfall                 | OUTFALL        | 0.10       | 0.23    | 52.23   | 0    |         | 0.23      |
| ngawhero Trimmed                 | Out OUTFALL    | 0.00       | 0.00    | 41.4    | 5    | 0 00:00 | 0.00      |
| GE_SWC01A                        | STORAGE        | 0.00       | 0.00    |         |      | 00:00   |           |
| GE_SWC01B<br>GE_SWC02A           | STORAGE        | 0.56       | 1.65    | 57.65   | 0    | 12:13   | 1.65      |
| GE_SWC02A                        | STORAGE        | 0.57       | 1.65    | 59.65   | 0    | 12:13   | 1.65      |
| GE SWC02B                        | STORAGE        | 0.56       | 1.61    | 59.61   | 0    | 12:11   | 1.60      |
| D01                              | STORAGE        | 0.19       |         | 56.63   | 0    | 17:28   | 0.63      |
| D02                              | STORAGE        | 0.26       | 0.88    | 57.88   | 0    | 17:33   | 0.88      |

\*\*\*\*\*

Node Inflow Summary

|                            |                      | Maximum M   |       |      |         |         | Total          | Flow      |
|----------------------------|----------------------|-------------|-------|------|---------|---------|----------------|-----------|
|                            |                      | Lateral     | Total | Time | of Max  | Inflow  | Inflow         | Balance   |
|                            |                      |             |       |      |         |         | Volume         |           |
| Node                       | Туре                 |             |       |      |         |         | 10^6 ltr       |           |
| STREAM_OUTFALL             |                      | 0.000       | 0.388 | 0    | 14:33   | 0       | 27             | 0.013     |
| SW01_01                    | JUNCTION             | 0.000       | 0.048 | 0    | 12:15   | 0       | 0.027<br>8.68  | 9.083     |
| SW01 02                    | JUNCTION             | 0.000       | 1.072 | 0    | 12:13   | 0       | 8.68           | -0.265    |
| SW01_03                    | JUNCTION<br>JUNCTION | 0.000       | 0.960 | 0    | 12:21   | 0       | 8.63<br>0.0729 | 0.286     |
| SW02_01                    | JUNCTION             |             |       |      |         |         |                |           |
| SW02_02                    | JUNCTION             | 0.000       | 1.747 | 0    | 12:12   | 0       | 14.3           | -0.079    |
| SW02 03                    | JUNCTION             | 0.000       | 1.554 | 0    | 12:21   | 0       | 14.1           | 0.067     |
| SWD01 CU OUTLET            | JUNCTION             | 0.339       | 0.378 | 0    | 12:09   | 2.84    | 12.3           | -0.027    |
| SWD01 SCRUFFY OUT          | JUNCTION             |             |       |      |         |         | 9.5            |           |
| SWD02 CU OUTLET            | JUNCTION             | 0.000       | 0.389 | 0    | 14:18   | 0       | 27.2           | 0.149     |
| SWD02 SCRUFFY OUT          | JUNCTION             | 0.000       | 0.196 | 0    | 17:33   | 0       | 15.2           | 0.001     |
| EX SWD01 OUT               | OUTFALL              | 0.126       | 0.126 | 0    | 12:09   | 0.869   | 0.869          | 0.000     |
| EX SWD02 OUT               | OUTFALL              | 0.205       | 0.205 | 0    | 12:09   | 1.41    | 1.41           | 0.000     |
| Mangawehro Existing        | Conditions           | Out OUTFALL | 9     | .825 | 9.825   | 0 12:24 | 229            | 229       |
| Mangawhero Extended        |                      |             |       |      |         |         |                |           |
| Mangawhero Outfall         | OUTFALL              | 0.000       | 0.388 | 0    | 14:34   | 0       | 27             | 0.000     |
| Mangawhero Trimmed         | Out OUTFALL          | 9.790       | 9.79  | 0    | 0 12:24 | 228     | 228            | 0.000     |
| SKGE_SWC01A                | STORAGE              | 0.000       | 0.000 | 0    | 00:00   | 0       | 0              | 0.000 ltr |
| SKGE_SWC01B                | STORAGE              | 1.138       | 1.138 | 0    | 12:09   | 12.8    | 12.8           | -0.000    |
| SKGE SWC02A                | STORAGE              | 1.188       | 1.188 | 0    | 12:09   | 13.9    | 13.9           | -0.000    |
| SKGE_SWC02A<br>SKGE_SWC02B | STORAGE              | 0.663       | 0.663 | 0    | 12:09   | 6.88    | 6.88           | -0.000    |
|                            | STORAGE              |             |       |      |         |         | 9.8            |           |
| SWD02                      | STORAGE              |             | 1.653 |      |         | 1.43    |                |           |

\*\*\*\*\*

Node Surcharge Summary

No nodes were surcharged.

No nodes were flooded.

#### \*\*\*\*\* Storage Volume Summary \*\*\*\*

|              | Average<br>Volume | Avg<br>Pcnt | Evap<br>Pcnt | Exfil<br>Pcnt | Maximum<br>Volume | Max<br>Pcnt | Time of Max<br>Occurrence | Maximum<br>Outflow |
|--------------|-------------------|-------------|--------------|---------------|-------------------|-------------|---------------------------|--------------------|
| Storage Unit | 1000 m3           | Full        | Loss         | Loss          | 1000 m3           | Full        | days hr:min               | CMS                |
|              |                   |             |              |               |                   |             |                           |                    |
| SKGE_SWC01A  | 0.000             | 0           | 0            | 0             | 0.000             | 0           | 0 00:00                   | 0.000              |
| SKGE SWC01B  | 0.536             | 28          | 0            | 33            | 1.568             | 83          | 0 12:13                   | 1.106              |
| SKGE SWC02A  | 0.570             | 28          | 0            | 32            | 1.655             | 83          | 0 12:13                   | 1.159              |
| SKGE SWC02B  | 0.280             | 28          | 0            | 32            | 0.803             | 80          | 0 12:11                   | 0.648              |
| SWD01        | 1.788             | 4           | 0            | 0             | 6.027             | 14          | 0 17:28                   | 0.124              |
| SWD02        | 2.712             | 6           | 0            | 0             | 9.591             | 20          | 0 17:33                   | 0.196              |

#### \*\*\*\*\* Outfall Loading Summary

|                     | Flow       | Avg       | Max    | Total    |         |
|---------------------|------------|-----------|--------|----------|---------|
|                     | Freq       | Flow      | Flow   | Volume   |         |
| Outfall Node        | Pcnt       | CMS       | CMS    | 10^6 ltr |         |
|                     |            |           |        |          |         |
| EX SWD01 OUT        | 36.09      | 0.009     | 0.126  | 0.869    |         |
| EX SWD02 OUT        | 37.06      | 0.015     | 0.205  | 1.411    |         |
| Mangawehro_Existing | Conditions | Out 99.97 | 0.885  | 9.825    | 229.184 |
| Mangawhero Extended | Out 99.97  | 0.969     | 10.473 | 251.076  |         |
| Mangawhero Outfall  | 96.61      | 0.108     | 0.388  | 27.032   |         |
| Mangawhero Trimmed  | Out 99.97  | 0.881     | 9.790  | 228.376  |         |
|                     |            |           |        |          |         |
| System              | 78.28      | 2.867     | 30.559 | 737.948  |         |

#### \*\*\*\*\*

Link Flow Summary

-----\_\_\_\_\_ Maximum Time of Max Maximum Max/ Max/ |Flow| Occurrence |Veloc| Full Full Туре смы Link days hr:min Flow Depth m/sec \_\_\_\_\_ CU MANGAWHERO OUT CONDUIT 0.388 0 14:34 3.10 0.21 0.33 0.82 CULVERT01 CONDUIT 17:28 0.124 0 0.12 0.50 CONDUIT CHANNEL CULVERT02 0.196 0 17:33 0.11 0.50 0.33 STREAM01 0 0.08 0.291 12:15 0.00 STREAM02 CHANNEL 0.388 0 14:33 0.00 0.07 STREAM02 SWALE01\_01 SWALE01\_02 SWALE01\_03 SWALE02\_01 SWALE02\_02 SWALE02\_02 SWALE02\_03 0 CHANNEL. 0.048 12:15 0.08 0 01 0.27 CHANNEL 0 12:21 0.960 0.54 0.04 0.29 CHANNEL 0.953 0 12:24 1.10 0.04 0.25 12:13 12:21 0.12 CHANNEL 0.099 0 0.01 0.34 CHANNEL Ő 0.07 1.554 0.33 12:24 17:28 17:33 CHANNEL 1.543 0 1.24 0.07 0.26 SWD01\_ORFC SWD02\_ORFCE 0 ORIFICE 0.124 1.00 ORIFICE 0.196 0 1.00 00:00 SKGE\_SWC01A\_OT WEIR 0.000 0 0.00 1.072 0 SKGE\_SWC01B\_OT SKGE\_SWC02A\_OT WEIR 0.15 WEIR 1.123 0 12:13 0.15 SKGE\_SWC02B\_OT SWD01\_100-Y SWD01\_10-Y 12:11 00:00 WEIR 0.631 0 0.11 WEIR 0.000 0 0.00 WEIR 0.000 0 00:00 0.00 SWD01\_10-1 SWD01\_EMRGNCY\_OF SWD02\_100-Y SWD02\_10-Y SWD02\_EMRGNCY\_OF 0.000 0 00:00 WEIR 0.00 WEIR 0.000 0 00:00 0.00 WEIR 0.000 0 00:00 0.00 0.000 0 00:00 WEIR 0.00

#### \*\*\*\*\*

Flow Classification Summary

|                   | Adjusted |      |      | Fract | Fraction of |      | Fime in Flow Class |      |      |       |  |
|-------------------|----------|------|------|-------|-------------|------|--------------------|------|------|-------|--|
|                   | /Actual  |      | Up   | Down  | Sub         | Sup  | Up                 | Down | Norm | Inlet |  |
| Conduit           | Length   | Dry  | Dry  | Dry   | Crit        | Crit | Crit               | Crit | Ltd  | Ctrl  |  |
| CU MANGAWHERO OUT | 1.00     | 0.02 | 0.00 | 0.00  | 0.01        | 0.96 | 0.00               | 0.00 | 0.01 | 0.00  |  |
| CULVERT01         | 1.00     | 0.00 | 0.02 | 0.00  | 0.98        | 0.00 | 0.00               | 0.00 | 0.44 | 0.00  |  |
| CULVERT02         | 1.00     | 0.01 | 0.02 | 0.00  | 0.98        | 0.00 | 0.00               | 0.00 | 0.98 | 0.00  |  |
| STREAM01          | 1.00     | 0.00 | 0.00 | 0.00  | 1.00        | 0.00 | 0.00               | 0.00 | 0.95 | 0.00  |  |
| STREAM02          | 1.00     | 0.01 | 0.00 | 0.00  | 0.99        | 0.00 | 0.00               | 0.00 | 0.00 | 0.00  |  |
| SWALE01 01        | 1.00     | 0.13 | 0.19 | 0.00  | 0.69        | 0.00 | 0.00               | 0.00 | 0.83 | 0.00  |  |
| SWALE01 02        | 1.00     | 0.13 | 0.00 | 0.00  | 0.87        | 0.00 | 0.00               | 0.00 | 0.69 | 0.00  |  |
| SWALE01 03        | 1.00     | 0.13 | 0.00 | 0.00  | 0.52        | 0.00 | 0.00               | 0.36 | 0.07 | 0.00  |  |
| SWALE02 01        | 1.00     | 0.12 | 0.18 | 0.00  | 0.70        | 0.00 | 0.00               | 0.00 | 0.82 | 0.00  |  |
| SWALE0202         | 1.00     | 0.12 | 0.00 | 0.00  | 0.88        | 0.00 | 0.00               | 0.00 | 0.72 | 0.00  |  |
| SWALE02_03        | 1.00     | 0.12 | 0.00 | 0.00  | 0.16        | 0.00 | 0.00               | 0.71 | 0.01 | 0.00  |  |

\*\*\*\*\*\* Conduit Surcharge Summary Analysis begun on: Thu Jun 23 16:27:27 2022 Analysis ended on: Thu Jun 23 16:27:40 2022 Total elapsed time: 00:00:13

# 10-YEAR/24-HOUR ARI WITH CLIMATE CHANGE (EXISTING CONDITIONS CATCHMENT CACLUCATIONS CONSIDER NON-CLIMATE CHANGE ADJUSTED RAINFALL)

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.2 (Build 5.2.0)

| * * * * * * * * * * * * * * *   |            |          |
|---------------------------------|------------|----------|
| Analysis Options                |            |          |
| * * * * * * * * * * * * * * * * |            |          |
| Flow Units                      | CMS        |          |
| Process Models:                 |            |          |
| Rainfall/Runoff                 | YES        |          |
| RDII                            | NO         |          |
| Snowmelt                        | NO         |          |
| Groundwater                     | NO         |          |
| Flow Routing                    | YES        |          |
| Ponding Allowed                 | NO         |          |
| Water Quality                   | NO         |          |
| Infiltration Method             | HORTON     |          |
| Flow Routing Method             | DYNWAVE    |          |
| Surcharge Method                | EXTRAN     |          |
| Starting Date                   | 10/06/2021 | 00:00:00 |
| Ending Date                     | 10/09/2021 | 00:00:00 |
| Antecedent Dry Days             | 0.0        |          |
| Report Time Step                | 00:05:00   |          |
| Wet Time Step                   | 00:00:01   |          |
| Dry Time Step                   | 00:00:01   |          |
| Routing Time Step               | 0.50 sec   |          |
| Variable Time Step              | YES        |          |
| Maximum Trials                  | 20         |          |
| Number of Threads               | 1          |          |
| Head Tolerance                  | 0.001500 m |          |
|                                 |            |          |
|                                 |            |          |

| * * * * * * * * * * * * * * * * * * * * | Volume    | Depth    |
|-----------------------------------------|-----------|----------|
| Runoff Quantity Continuity              | hectare-m | mm       |
| * * * * * * * * * * * * * * * * * * * * |           |          |
| Total Precipitation                     | 2208.909  | 146.251  |
| Evaporation Loss                        | 0.000     | 0.000    |
| Infiltration Loss                       | 2076.735  | 137.500  |
| Surface Runoff                          | 130.676   | 8.652    |
| Final Storage                           | 1.498     | 0.099    |
| Continuity Error (%)                    | 0.000     |          |
|                                         |           |          |
|                                         |           |          |
| * * * * * * * * * * * * * * * * * * * * | Volume    | Volume   |
| Flow Routing Continuity                 | hectare-m | 10^6 ltr |
| * * * * * * * * * * * * * * * * * * * * |           |          |
| Dry Weather Inflow                      | 0.000     | 0.000    |
| Wet Weather Inflow                      | 130.676   | 1306.777 |
| Groundwater Inflow                      | 0.000     | 0.000    |
| RDII Inflow                             | 0.000     | 0.000    |
| External Inflow                         | 0.000     | 0.000    |
| External Outflow                        | 129.360   | 1293.609 |
| Flooding Loss                           | 0.000     | 0.000    |
| Evaporation Loss                        | 0.000     | 0.000    |
| Exfiltration Loss                       | 1.227     | 12.273   |
| Initial Stored Volume                   | 0.000     | 0.000    |
| Final Stored Volume                     | 0.088     | 0.882    |
|                                         |           |          |

0.001

Continuity Error (%) .....

#### 

| ************************************** |   |        |     |
|----------------------------------------|---|--------|-----|
| Minimum Time Step                      | : | 0.45   | sec |
| Average Time Step                      | : | 0.50   | sec |
| Maximum Time Step                      | : | 0.50   | sec |
| % of Time in Steady State              | : | 0.00   |     |
| Average Iterations per Step            | : | 2.00   |     |
| % of Steps Not Converging              | : | 0.00   |     |
| Time Step Frequencies                  | : |        |     |
| 0.500 - 0.315 sec                      | : | 100.00 | 90  |
| 0.315 - 0.199 sec                      | : | 0.00   | 8   |
| 0.199 - 0.126 sec                      | : | 0.00   | 8   |
| 0.126 - 0.079 sec                      | : | 0.00   | 90  |
| 0.079 - 0.050 sec                      | : | 0.00   | 90  |
|                                        |   |        |     |

### \*\*\*\*\* Subcatchment Runoff Summary

| Subcatchment          | Total<br>Precip<br>mm | Total<br>Runon<br>mm | Total<br>Evap<br>mm | Total<br>Infil<br>mm | Imperv<br>Runoff<br>mm | Perv<br>Runoff<br>mm | Total<br>Runoff<br>mm | Total<br>Runoff<br>10^6 ltr | Peak<br>Runoff<br>CMS | Runoff<br>Coeff |
|-----------------------|-----------------------|----------------------|---------------------|----------------------|------------------------|----------------------|-----------------------|-----------------------------|-----------------------|-----------------|
| C W01                 | 146.31                | 0.00                 | 0.00                | 56.77                | 72.15                  | 16.39                | 88.54                 | 2.12                        | 0.33                  | 0.605           |
| C_W02                 | 146.31                | 0.00                 | 0.00                | 56.91                | 72.15                  | 16.25                | 88.40                 | 2.54                        | 0.38                  | 0.604           |
| EX SWC01B             | 123.26                | 0.00                 | 0.00                | 103.95               | 6.09                   | 13.15                | 19.24                 | 2.95                        | 0.26                  | 0.150           |
| EX SWC02A             | 123.26                | 0.00                 | 0.00                | 104.42               | 6.09                   | 12.68                | 18.77                 | 3.13                        | 0.28                  | 0.15            |
| EX SWC02B             | 123.26                | 0.00                 | 0.00                | 102.91               | 6.09                   | 14.19                | 20.28                 | 1.67                        | 0.15                  | 0.16            |
| Mangawhero_Existing_0 | Conditions            | 146.31               | 0.00                | 0.00                 | 138.14                 | 7.22                 | 0.86                  | 8.08                        | 398.28                | 17              |
| Mangawhero Extended   | 146.31                | 0.00                 | 0.00                | 137.64               | 7.71                   | 0.86                 | 8.57                  | 433.86                      | 19.08                 | 0.05            |
| Mangawhero Trimmed    | 146.31                | 0.00                 | 0.00                | 138.14               | 7.22                   | 0.86                 | 8.08                  | 396.88                      | 17.85                 | 0.05            |
| Off-Site Catchment    | 146.31                | 0.00                 | 0.00                | 135.73               | 2.90                   | 7.66                 | 10.55                 | 11.59                       | 0.66                  | 0.07            |
| SWC01B<br>SWC02A      | 146.31<br>146.31      | 0.00                 | 0.00                | 11.20<br>11.22       | 130.30<br>130.30       | 3.43<br>3.42         | 133.73<br>133.71      | 20.52<br>22.26              | 2.09<br>2.18          | 0.91<br>0.91    |
| SWC02B                | 146.31                | 0.00                 | 0.00                | 11.17                | 130.31                 | 3.46                 | 133.77                | 10.99                       | 1.21                  | 0.91            |

#### \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \*

Node Depth Summary \*\*\*\*\*\*\*\*

|                                      |                      | Average I<br>Depth |      |       |   |       | Reported<br>Max Depth |
|--------------------------------------|----------------------|--------------------|------|-------|---|-------|-----------------------|
| Node                                 | Туре                 |                    |      |       |   |       |                       |
|                                      | туре                 |                    |      |       |   |       |                       |
| STREAM OUTFALL                       |                      |                    |      |       |   |       |                       |
| SW01 01                              | JUNCTION             | 0.00               | 0.24 | 57.24 | 0 | 12:21 | 0.24                  |
| SW01 02                              | JUNCTION             | 0.15               | 0.84 | 57.24 | 0 | 12:17 | 0.83                  |
| SW01_03                              | JUNCTION<br>JUNCTION | 0.25               | 0.91 |       |   | 16:11 |                       |
| SW02_01                              | JUNCTION             | 0.01               | 0.39 | 58.89 | 0 | 12:20 | 0.39                  |
| SW02_02                              | JUNCTION             | 0.12               | 0.97 | 58.87 | 0 | 12:18 | 0.97                  |
| SW02_03                              | JUNCTION             | 0.17               | 0.82 | 58.42 | 0 | 16:04 | 0.82                  |
| SWD01 CU OUTLET                      | JUNCTION             | 0.21               | 0.56 | 55.96 | 0 | 15:00 | 0.56                  |
| SWD01_SCRUFFY_OUT<br>SWD02_CU_OUTLET | JUNCTION             | 0.16               | 0.51 | 56.01 | 0 | 15:21 | 0.51                  |
| SWD02_CU_OUTLET                      | JUNCTION             | 0.36               | 0.75 | 55.40 | 0 | 15:13 | 0.75                  |
| SWD02_SCRUFFY_OUT<br>EX SWD01 OUT    | JUNCTION             | 0.10               | 0.29 | 55.49 | 0 | 16:01 | 0.29                  |
| EX_SWD01_OUT                         | OUTFALL              | 0.00               | 0.00 | 55.50 | 0 | 00:00 | 0.00                  |
| EX_SWD02_OUT                         |                      |                    |      |       |   |       |                       |
| Mangawehro_Existing                  |                      |                    |      |       |   |       | 0 00:00               |
| Mangawhero_Extended                  |                      |                    |      |       |   |       |                       |
| Mangawhero_Outfall                   | OUTFALL              | 0.14               | 0.40 | 52.40 | 0 |       |                       |
| Mangawhero_Trimmed_<br>SKGE_SWC01A   | Out OUTFALL          | 0.00               | 0.00 | 41.4  | 5 |       | 0.00                  |
| SKGE_SWC01A                          | STORAGE              | 0.00               | 0.00 | 56.00 | 0 | 00:00 |                       |
| SKGE_SWC01B<br>SKGE_SWC02A           | STORAGE              | 0.62               | 1.73 | 57.73 | 0 | 12:11 | 1.72                  |
| SKGE_SWC02A                          | STORAGE              | 0.63               | 1.73 | 59.73 | 0 | 12:12 | 1.73                  |
| SKGE_SWC02B                          |                      |                    |      |       |   |       |                       |
| SWD01                                |                      |                    |      | 57.01 | 0 | 16:11 | 1.01                  |
| SWD02                                | STORAGE              | 0.43               | 1.42 | 58.42 | 0 | 16:05 | 1.42                  |

#### \*\*\*\*\*

Node Inflow Summary

|                      |             | Maximum N  |        |      |         |          |          | Flow      |  |
|----------------------|-------------|------------|--------|------|---------|----------|----------|-----------|--|
|                      |             | Lateral    | Total  | Time | of Max  | Inflow   | Inflow   | Balance   |  |
|                      |             |            | Inflow |      |         | Volume   |          | Error     |  |
| Node                 | Туре        | CMS        | CMS    | days | hr:min  | 10^6 ltr | 10^6 ltr | Percent   |  |
| STREAM_OUTFALL       |             | 0.000      |        | 0    | 15:25   | 0        | 56.9     | 0.010     |  |
| SW01 01              | JUNCTION    | 0.000      | 0.120  | 0    | 12:13   | 0        | 0.0921   | 10.692    |  |
| SW01_02              | JUNCTION    | 0.000      | 1.987  |      | 12:11   | 0        | 16.2     | -0.454    |  |
| SW01_03              | JUNCTION    | 0.000      | 1.750  |      | 12:19   | 0        | 16.1     |           |  |
| SW02_01              |             |            | 0.270  |      | 12:13   | 0        | 0.208    | 7.707     |  |
| W02_02               | JUNCTION    | 0.000      | 3.238  | 0    | 12:11   | 0        | 26.5     | -0.290    |  |
| SW02_03              | JUNCTION    | 0.000      | 2.760  | 0    | 12:18   | 0        | 26.3     | 0.266     |  |
| WD01 CU OUTLET       | JUNCTION    | 0.658      | 0.756  | 0    | 12:09   | 11.6     | 29.3     | -0.102    |  |
| SWD01 SCRUFFY OUT    | JUNCTION    | 0.000      | 0.260  | 0    | 16:11   | 0        | 17.7     | 0.001     |  |
| WD02 CU OUTLET       | JUNCTION    | 0.000      | 1.031  | 0    | 15:23   | 0        | 57.1     | 0.132     |  |
| SWD02 SCRUFFY OUT    | JUNCTION    | 0.000      | 0.423  | 0    | 16:05   | 0        | 28.3     | 0.000     |  |
| IX SWD01 OUT         |             |            |        |      | 12:09   |          |          |           |  |
| X SWD02 OUT          | OUTFALL     | 0.428      | 0.428  | 0    | 12:09   | 4.79     | 4.79     | 0.000     |  |
| angawehro Existing   | Conditions  | Out OUTFAL | L 17   | .912 | 17.912  | 0 12:19  | 398      | 398       |  |
| langawhero_Extended  | Out OUTFALL | 19.08      | l 19.0 | 81   | 0 12:19 | 434      | 434      | 0.000     |  |
| Mangawhero Outfall   | OUTFALL     | 0.000      | 1.029  | 0    | 15:29   | 0        | 56.8     | 0.000     |  |
| Mangawhero Trimmed ( | Out OUTFALL | 17.849     | 17.84  | 9    | 0 12:19 | 397      | 397      | 0.000     |  |
| SKGE SWC01A          |             |            | 0.000  |      | 00:00   |          | 0        | 0.000 ltr |  |
| SKGE_SWC01B          | STORAGE     | 2.087      | 2.087  | 0    | 12:09   | 20.5     | 20.5     | -0.000    |  |
| SKGE SWC02A          | STORAGE     | 2.184      | 2.184  | 0    | 12:09   | 22.3     | 22.3     | -0.000    |  |
| SKGE_SWC02B          | STORAGE     | 1.212      | 1.212  | 0    | 12:09   | 11       | 11       | -0.000    |  |
| SWD01                | STORAGE     |            | 1.909  |      | 12:21   | 2.12     | 18.1     | -0.041    |  |
| SWD02                | STORAGE     | 0.380      | 2.994  | 0    | 12:18   | 2.54     | 28.7     | -0.029    |  |

\*\*\*\*\*

Node Surcharge Summary

No nodes were surcharged.

No nodes were flooded.

#### Storage Volume Summary

|              | Average<br>Volume | Avg<br>Pcnt | Evap<br>Pcnt | Exfil<br>Pcnt | Maximum<br>Volume | Max<br>Pcnt | Time of Max<br>Occurrence | Maximum<br>Outflow |
|--------------|-------------------|-------------|--------------|---------------|-------------------|-------------|---------------------------|--------------------|
| Storage Unit | 1000 m3           | Full        | Loss         | Loss          | 1000 m3           | Full        | days hr:min               | CMS                |
| SKGE SWC01A  | 0.000             | 0           | 0            | 0             | 0.000             | 0           | 0 00:00                   | 0.000              |
| SKGE SWC01B  | 0.589             | 31          | 0            | 21            | 1.640             | 86          | 0 12:11                   | 2.020              |
| SKGE SWC02A  | 0.626             | 31          | 0            | 21            | 1.734             | 87          | 0 12:12                   | 2.116              |
| SKGE SWC02B  | 0.307             | 31          | 0            | 21            | 0.829             | 83          | 0 12:10                   | 1.184              |
| SWD01        | 3.042             | 7           | 0            | 0             | 10.065            | 23          | 0 16:11                   | 0.260              |
| SWD02        | 4.678             | 10          | 0            | 0             | 16.215            | 34          | 0 16:05                   | 0.423              |

#### \*\*\*\*\* Outfall Loading Summary

|                     | Flow       | Avg       | Max    | Total    |         |
|---------------------|------------|-----------|--------|----------|---------|
|                     | Freq       | Flow      | Flow   | Volume   |         |
| Outfall Node        | Pcnt       | CMS       | CMS    | 10^6 ltr |         |
| EX SWD01 OUT        | 36.31      | 0.031     | 0.263  | 2.951    |         |
| EX SWD02 OUT        | 37.27      | 0.050     | 0.428  | 4.791    |         |
| Mangawehro Existing | Conditions | Out 99.98 | 1.53   | 7 17.912 | 398.280 |
| Mangawhero Extended | Out 99.98  | 1.674     | 19.081 | 433.860  |         |
| Mangawhero Outfall  | 97.42      | 0.225     | 1.029  | 56.845   |         |
| Mangawhero_Trimmed_ | Out 99.98  | 1.532     | 17.849 | 396.876  |         |
| System              | 78.49      | 5.049     | 55.875 | 1293.603 |         |

#### 

Link Flow Summary

| Link                                                                                                                                                                                                                                                                                                                                          | Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Flow                                                                                                                                                                                        | Occu        | irrence                                                                                                                                                        | Maximum<br> Veloc <br>m/sec                                  | Full                                                                         | Max/<br>Full<br>Depth                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CU_MANGAWHERO_OUT<br>CULVERT01<br>CULVERT02<br>STREAM01<br>STREAM02<br>SWALE01_01<br>SWALE01_02<br>SWALE02_01<br>SWALE02_01<br>SWALE02_02<br>SWALE02_03<br>SWD01_OFC<br>SWD02_OFFCE<br>SKGE_SWC01A_OT<br>SKGE_SWC01A_OT<br>SKGE_SWC02A_OT<br>SKGE_SWC02A_OT<br>SKGE_SWC02A_OT<br>SKGE_SWC02A_OT<br>SKGE_SWC02A_OT<br>SWD01_10-Y<br>SWD01_LOHY | CONDUIT<br>CONDUIT<br>CONDUIT<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANNEL<br>CHANEL<br>CHANNEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHANEL<br>CHAN | $\begin{array}{c} 1.029\\ 0.260\\ 0.423\\ 0.613\\ 1.029\\ 0.120\\ 1.750\\ 1.755\\ 0.270\\ 2.760\\ 2.757\\ 0.165\\ 0.260\\ 0.000\\ 1.987\\ 2.081\\ 1.166\\ 0.000\\ 0.095\\ 0.000\end{array}$ |             | 15:29<br>16:11<br>16:05<br>15:00<br>15:20<br>12:13<br>12:19<br>12:22<br>12:13<br>12:18<br>12:20<br>16:11<br>16:05<br>00:00<br>12:11<br>12:12<br>12:10<br>00:00 | 3.80<br>0.91<br>1.30<br>0.36<br>0.57<br>0.13<br>0.62<br>1.24 | 0.55<br>0.25<br>0.23<br>0.00<br>0.00<br>0.01<br>0.08<br>0.08<br>0.03<br>0.13 | $\begin{array}{c} 0.59\\ 0.71\\ 0.69\\ 0.11\\ 0.10\\ 0.36\\ 0.36\\ 0.43\\ 0.45\\ 0.40\\ 1.00\\ 1.00\\ 0.00\\ 0.23\\ 0.16\\ 0.00\\ 0.13\\ 0.00\\ \end{array}$ |
| SWD02_100-Y<br>SWD02_10-Y<br>SWD02_EMRGNCY_OF                                                                                                                                                                                                                                                                                                 | WEIR<br>WEIR<br>WEIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000<br>0.164<br>0.000                                                                                                                                                                     | 0<br>0<br>0 | 00:00<br>16:05<br>00:00                                                                                                                                        |                                                              |                                                                              | 0.00<br>0.20<br>0.00                                                                                                                                         |

#### \*\*\*\*\*

|                   |                               |      |           |             |             |                     | ·                    |              |             |               |
|-------------------|-------------------------------|------|-----------|-------------|-------------|---------------------|----------------------|--------------|-------------|---------------|
| Conduit           | Adjusted<br>/Actual<br>Length | Dry  | Up<br>Dry | Down<br>Dry | Sub<br>Crit | Time<br>Sup<br>Crit | in Flo<br>Up<br>Crit | Down<br>Crit | Norm<br>Ltd | Inlet<br>Ctrl |
| CU MANGAWHERO OUT | 1.00                          | 0.02 | 0.00      | 0.00        | 0.01        | 0.97                | 0.00                 | 0.00         | 0.01        | 0.00          |
| CULVERT01         | 1.00                          | 0.00 | 0.02      | 0.00        | 0.98        | 0.00                | 0.00                 | 0.00         | 0.29        | 0.00          |
| CULVERT02         | 1.00                          | 0.01 | 0.01      | 0.00        | 0.98        | 0.00                | 0.00                 | 0.00         | 0.87        | 0.00          |
| STREAM01          | 1.00                          | 0.00 | 0.00      | 0.00        | 1.00        | 0.00                | 0.00                 | 0.00         | 0.96        | 0.00          |
| STREAM02          | 1.00                          | 0.01 | 0.00      | 0.00        | 0.99        | 0.00                | 0.00                 | 0.00         | 0.00        | 0.00          |
| SWALE01 01        | 1.00                          | 0.09 | 0.14      | 0.00        | 0.77        | 0.00                | 0.00                 | 0.00         | 0.80        | 0.00          |
| SWALE01 02        | 1.00                          | 0.09 | 0.00      | 0.00        | 0.91        | 0.00                | 0.00                 | 0.00         | 0.55        | 0.00          |
| SWALE01 03        | 1.00                          | 0.09 | 0.00      | 0.00        | 0.64        | 0.00                | 0.00                 | 0.27         | 0.07        | 0.00          |
| SWALE02 01        | 1.00                          | 0.09 | 0.19      | 0.00        | 0.73        | 0.00                | 0.00                 | 0.00         | 0.82        | 0.00          |
| SWALE02 02        | 1.00                          | 0.09 | 0.00      | 0.00        | 0.91        | 0.00                | 0.00                 | 0.00         | 0.65        | 0.00          |
| SWALE02_03        | 1.00                          | 0.09 | 0.00      | 0.00        | 0.28        | 0.00                | 0.00                 | 0.64         | 0.01        | 0.00          |

\*\*\*\*\* Conduit Surcharge Summary Analysis begun on: Thu Jun 23 16:28:31 2022 Analysis ended on: Thu Jun 23 16:28:44 2022 Total elapsed time: 00:00:13

#### 100-YEAR/24-HOUR ARI WITH CLIMATE CHANGE (EXISTING CONDITIONS CATCHMENT CACLUCATIONS CONSIDER NON-CLIMATE CHANGE ADJUSTED RAINFALL)

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.2 (Build 5.2.0)

| * * * * * * * * * * * * * * * * |                     |
|---------------------------------|---------------------|
| Analysis Options                |                     |
| * * * * * * * * * * * * * * *   |                     |
| Flow Units                      | CMS                 |
| Process Models:                 |                     |
| Rainfall/Runoff                 | YES                 |
| RDII                            | NO                  |
| Snowmelt                        | NO                  |
| Groundwater                     | NO                  |
| Flow Routing                    | YES                 |
| Ponding Allowed                 | NO                  |
| Water Quality                   | NO                  |
| Infiltration Method             | HORTON              |
| Flow Routing Method             | DYNWAVE             |
| Surcharge Method                | EXTRAN              |
| Starting Date                   | 10/06/2021 00:00:00 |
| Ending Date                     | 10/09/2021 00:00:00 |
| Antecedent Dry Days             | 0.0                 |
| Report Time Step                | 00:05:00            |
| Wet Time Step                   | 00:00:01            |
| Dry Time Step                   | 00:00:01            |
| Routing Time Step               | 0.50 sec            |
| Variable Time Step              | YES                 |
| Maximum Trials                  | 20                  |
| Number of Threads               | 1                   |
| Head Tolerance                  | 0.001500 m          |
|                                 |                     |
|                                 |                     |

| ***********************************                                                                                                                                                                                                                         | Volume<br>hectare-m<br><br>3490.952<br>0.000<br>3201.126<br>288.321<br>1.505<br>0.000                                      | Depth<br>mm<br>231.135<br>0.000<br>211.946<br>19.090<br>0.100                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Flow Routing Continuity<br>The Weather Inflow<br>Wet Weather Inflow<br>Groundwater Inflow<br>RDII Inflow<br>External Inflow<br>Flooding Loss<br>Evaporation Loss<br>Exfiltration Loss<br>Final Stored Volume<br>Final Stored Volume<br>Continuity Error (%) | Volume<br>hectare-m<br>0.000<br>288.321<br>0.000<br>0.000<br>286.834<br>0.000<br>0.000<br>1.379<br>0.000<br>0.109<br>0.000 | Volume<br>10^6 ltr<br><br>0.000<br>2883.245<br>0.000<br>0.000<br>2868.368<br>0.000<br>13.787<br>0.000<br>1.088 |

Time-Step Critical Elements None

\*\*\*\*\* Highest Flow Instability Indexes All links are stable.

\*\*\*\*\* Most Frequent Nonconverging Nodes Convergence obtained at all time steps.

#### \*\*\*\*\* Routing Time Step Summary

| **************************** |   |       |     |
|------------------------------|---|-------|-----|
| Minimum Time Step            | : | 0.12  | sec |
| Average Time Step            | : | 0.50  | sec |
| Maximum Time Step            | : | 0.50  | sec |
| % of Time in Steady State    | : | 0.00  |     |
| Average Iterations per Step  | : | 2.00  |     |
| % of Steps Not Converging    | : | 0.00  |     |
| Time Step Frequencies        | : |       |     |
| 0.500 - 0.315 sec            | : | 99.99 | 8   |
| 0.315 - 0.199 sec            | : | 0.00  | olo |
| 0.199 - 0.126 sec            | : | 0.00  | 8   |
| 0.126 - 0.079 sec            | : | 0.00  | 8   |
| 0.079 - 0.050 sec            | : | 0.00  | 8   |
|                              |   |       |     |

### \*\*\*\*\* Subcatchment Runoff Summary

|                                  | Total        | Total       | Total      | Total       | Imperv       | Perv         | Total        | Total              | Peak          | Runofí |
|----------------------------------|--------------|-------------|------------|-------------|--------------|--------------|--------------|--------------------|---------------|--------|
| Subcatchment                     | Precip<br>mm | Runon<br>mm | Evap<br>mm | Infil<br>mm | Runoff<br>mm | Runoff<br>mm | Runoff<br>mm | Runoff<br>10^6 ltr | Runoff<br>CMS | Coeff  |
| C W01                            | 231.24       | 0.00        | 0.00       | 69.80       | 114.62       | 45.82        | 160.44       | 3.85               | 0.62          | 0.694  |
| C W02                            | 231.24       | 0.00        | 0.00       | 69.93       | 114.62       | 45.69        | 160.30       | 4.60               | 0.73          | 0.693  |
| EX SWC01B                        | 193.14       | 0.00        | 0.00       | 132.74      | 9.58         | 50.75        | 60.33        | 9.26               | 0.67          | 0.312  |
| EX SWC02A                        | 193.14       | 0.00        | 0.00       | 133.56      | 9.58         | 49.92        | 59.50        | 9.91               | 0.69          | 0.308  |
| EX SWC02B                        | 193.14       | 0.00        | 0.00       | 131.00      | 9.58         | 52.49        | 62.07        | 5.10               | 0.40          | 0.321  |
| Mangawhero_Existing_Conc<br>.078 | ditions      | 231.24      | 0.00       | 0.00        | 213.20       | 11.47        | 6.47         | 17.94              | 884.44        | 34.02  |
| Mangawhero Extended              | 231.24       | 0.00        | 0.00       | 212.42      | 12.25        | 6.47         | 18.71        | 947.74             | 36.15         | 0.081  |
| Mangawhero Trimmed               | 231.24       | 0.00        | 0.00       | 213.20      | 11.47        | 6.47         | 17.94        | 881.33             | 33.90         | 0.078  |
| Off-Site Catchment               | 231.24       | 0.00        | 0.00       | 185.52      | 4.59         | 41.09        | 45.68        | 50.15              | 1.51          | 0.198  |
| SWC01B                           | 231.24       | 0.00        | 0.00       | 13.81       | 206.73       | 9.31         | 216.04       | 33.15              | 3.81          | 0.934  |
| SWC02A                           | 231.24       | 0.00        | 0.00       | 13.83       | 206.73       | 9.30         | 216.03       | 35.96              | 4.00          | 0.934  |
| SWC02B                           | 231.24       | 0.00        | 0.00       | 13.78       | 206.74       | 9.34         | 216.08       | 17.75              | 2.19          | 0.934  |
|                                  |              |             |            |             |              |              |              |                    |               |        |

### \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \*

Node Depth Summary \*\*\*\*\*\*\*\*\*

| Average Maximum Maximum Time of Max Repo                                                                                                                                                                                                                                                                       |       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Depth Depth HGL Occurrence Max D                                                                                                                                                                                                                                                                               |       |
| de Type Meters Meters Meters days hr:min Me                                                                                                                                                                                                                                                                    |       |
| REAM OUTFALL JUNCTION 0.57 2.92 57.21 0 19:10                                                                                                                                                                                                                                                                  | 2.92  |
| D1 01 JUNCTION 0.07 0.47 57.47 0 15:41                                                                                                                                                                                                                                                                         | 0.47  |
| 01_01 JUNCTION 0.07 0.47 57.47 0 15:41<br>01_02 JUNCTION 0.29 1.07 57.47 0 15:41                                                                                                                                                                                                                               | 1.07  |
| D1_03 JUNCTION 0.42 1.37 57.47 0 15:47                                                                                                                                                                                                                                                                         | 1.37  |
|                                                                                                                                                                                                                                                                                                                | 0.60  |
| D2 02 JUNCTION 0.24 1.20 59.10 0 12:17                                                                                                                                                                                                                                                                         | 1.19  |
| 02 <sup>03</sup> JUNCTION 0.32 1.44 59.04 0 14:58                                                                                                                                                                                                                                                              | 1.44  |
| DOI CU OUTLET JUNCTION 0.42 1.81 57.21 0 19:10                                                                                                                                                                                                                                                                 | 1.81  |
| DOI_CU_OUTLET JUNCTION 0.42 1.81 57.21 0 19:10<br>DOI_SCRUFFY_OUT JUNCTION 0.37 1.76 57.26 0 19:05                                                                                                                                                                                                             | 1.76  |
| D02_CU_OUTLET         JUNCTION         0.68         2.56         57.21         0         19:10           D02_SCRUFFY_OUT         JUNCTION         0.41         2.30         57.50         0         18:32           _SWD01_OUT         OUTFALL         0.00         0.00         55.50         0         00:00 | 2.56  |
| D02 SCRUFFY OUT JUNCTION 0.41 2.30 57.50 0 18:32                                                                                                                                                                                                                                                               | 2.30  |
| SWD01 OUT OUTFALL 0.00 0.00 55.50 0 00:00                                                                                                                                                                                                                                                                      | 0.00  |
| SWD02_OUT OUTFALL 0.00 0.00 54.65 0 00:00                                                                                                                                                                                                                                                                      | 0.00  |
| ngawehro Existing Conditions Out OUTFALL 0.00 0.00 41.45 0                                                                                                                                                                                                                                                     | 00:00 |
| ngawhero_Extended_Out OUTFALL 0.00 0.00 41.45 0 00:00                                                                                                                                                                                                                                                          | 0.00  |
| ngawhero Outfall OUTFALL 0 24 0 75 52 75 0 14·44                                                                                                                                                                                                                                                               | 0.75  |
| gawhero_Trimmed_Out OUTFALL 0.00 0.00 41.45 0 00:00<br>GE_SWC01A STORAGE 0.00 0.00 56.00 0 00:00                                                                                                                                                                                                               | 0.00  |
| GE_SWC01ASTORAGE 0.00 0.00 56.00 0 00:00                                                                                                                                                                                                                                                                       | 0.00  |
| GE SWC01B STORAGE 0.66 1.84 57.84 0 12:11                                                                                                                                                                                                                                                                      | 1.83  |
|                                                                                                                                                                                                                                                                                                                | 1.84  |
|                                                                                                                                                                                                                                                                                                                | 1.73  |
| DO1 STORAGE 0.50 1.47 57.47 0 15:47                                                                                                                                                                                                                                                                            | 1.47  |
| D02 STORAGE 0.62 2.04 59.04 0 14:59                                                                                                                                                                                                                                                                            | 2.04  |

\*\*\*\*\*

Node Inflow Summary

|                                           |             |             |        |      |         |          | Total        |           |  |
|-------------------------------------------|-------------|-------------|--------|------|---------|----------|--------------|-----------|--|
|                                           |             |             |        |      |         |          | Inflow       |           |  |
|                                           | _           | Inflow      | Inflow | 0cci | irrence | Volume   | Volume       | Error     |  |
| Node                                      | Туре        | CMS         | CMS    | days | hr:min  | 10^6 Itr | 10^6 Itr<br> | Percent   |  |
| STREAM OUTFALL                            | JUNCTION    | 0.000       | 2.118  | 0    | 16:47   | 0        | 131          | 0.033     |  |
| SW01_01<br>SW01_02<br>SW01_03<br>SW02_01  | JUNCTION    | 0.000       | 0.301  | 0    | 12:13   | 0        | 0.346        | 4.938     |  |
| SW01_02                                   | JUNCTION    | 0.000       | 3.651  | 0    | 12:11   | 0        | 28.9         | -0.285    |  |
| SW01 03                                   | JUNCTION    | 0.000       | 3.057  | 0    | 12:16   | 0        | 28.3         | 0.239     |  |
| SW02_01                                   | JUNCTION    | 0.000       | 0.599  | 0    | 12:11   | 0        | 0.594        | 1.823     |  |
| SW02 02                                   | JUNCTION    | 0.000       | 5.947  | 0    | 12:10   | 0        | 47           | -0.231    |  |
| sw02_02<br>sw02_02<br>sw02_03             | JUNCTION    | 0.000       | 5.073  | 0    | 12:19   | 0        | 46.3         | 0.249     |  |
| SWD01_CU_OUTLET                           | JUNCTION    | 1.514       | 1.851  | 0    | 14:39   | 50.2     | 81.7         | -0.089    |  |
| SWD01 SCRUFFY OUT                         | JUNCTION    | 0.000       | 0.534  | 0    | 14:02   | 0        | 31.6         | 0.000     |  |
| SWD02 CU OUTLET                           | JUNCTION    | 0.000       | 2.594  | 0    | 13:36   | 0        | 131          | 0.069     |  |
| SWD02_SCRUFFY_OUT<br>EX_SWD01_OUT         | JUNCTION    | 0.000       | 0.872  | 0    | 14:59   | 0        | 50.2         | 0.000     |  |
| EX SWD01 OUT                              | OUTFALL     | 0.669       | 0.669  | 0    | 12:09   | 9.26     | 9.26         | 0.000     |  |
| EX_SWD02_OUT<br>Mangawehro Existing       | OUTFALL     | 1.093       | 1.093  | 0    | 12:09   | 15       | 15           | 0.000     |  |
| Mangawehro Existing                       | Conditions  | Out OUTFALL | 34     | .024 | 34.024  | 0 12:14  | 884          | 884       |  |
| Mangawhero_Extended<br>Mangawhero Outfall | Out OUTFALL | 36.146      | 36.1   | 46   | 0 12:14 | 948      | 948          | 0.000     |  |
| Mangawhero Outfall                        | OUTFALL     | 0.000       | 2.073  | 0    | 19:11   | 0        | 131          | 0.000     |  |
| Mangawhero_Trimmed_(                      | Out OUTFALL | 33.904      | 33.90  | 4    | 0 12:14 | 881      | 881          | 0.000     |  |
| SKGE SWC01A                               | STORAGE     | 0.000       | 0.000  | 0    | 00:00   | 0        | 0            | 0.000 ltr |  |
| SKGE_SWC01B                               | STORAGE     | 3.806       | 3.806  | 0    | 12:09   | 33.1     | 33.1         | -0.000    |  |
| SKGE SWC02A                               | STORAGE     | 3.997       | 3.997  | 0    | 12:09   | 36       | 36           | -0.000    |  |
| SKGE_SWC02B                               | STORAGE     | 2.188       | 2.188  | 0    | 12:09   | 17.7     | 17.7         | -0.000    |  |
| SWD01                                     | STORAGE     | 0.625       | 3.290  | 0    | 12:15   | 3.85     | 32.1         | -0.038    |  |
| SWD02                                     | STORAGE     | 0.729       | 5.374  | 0    | 12:14   | 4.6      | 50.8         | -0.040    |  |

\*\*\*\*\*

Node Surcharge Summary

No nodes were surcharged.

No nodes were flooded.

### 

|              | Average | Avg  | -    | Exfil | Maximum | Max  | Time of Ma |           |
|--------------|---------|------|------|-------|---------|------|------------|-----------|
|              | Volume  | Pcnt | Pcnt | Pcnt  | Volume  | Pcnt | Occurrent  | e Outflow |
| Storage Unit | 1000 m3 | Full | Loss | Loss  | 1000 m3 | Full | days hr:m: | .n CMS    |
| SKGE SWC01A  | 0.000   | 0    | 0    | 0     | 0.000   | 0    | 0 00:0     | 0.000     |
| SKGE SWC01B  | 0.632   | 33   | 0    | 14    | 1.748   | 92   | 0 12:1     | .1 3.684  |
| SKGE SWC02A  | 0.671   | 34   | 0    | 13    | 1.852   | 93   | 0 12:1     | .1 3.870  |
| SKGE SWC02B  | 0.327   | 33   | 0    | 13    | 0.869   | 87   | 0 12:1     | .0 2.141  |
| SWD01        | 4.938   | 11   | 0    | 0     | 15.255  | 35   | 0 15:4     | 0.534     |
| SWD02        | 7.021   | 15   | 0    | 0     | 24.630  | 52   | 0 14:5     | 0.872     |

#### 

|                     | Flow       | Avg       | Max    | Total    |         |
|---------------------|------------|-----------|--------|----------|---------|
|                     | Freq       | Flow      | Flow   | Volume   |         |
| Outfall Node        | Pcnt       | CMS       | CMS    | 10^6 ltr |         |
|                     |            |           |        |          |         |
| EX SWD01 OUT        | 36.51      | 0.098     | 0.669  | 9.256    |         |
| EX_SWD02_OUT        | 37.46      | 0.155     | 1.093  | 15.004   |         |
| Mangawehro_Existing | Conditions | Out 99.99 | 3.41   | 4 34.024 | 884.446 |
| Mangawhero Extended | Out 99.99  | 3.658     | 36.146 | 947.738  |         |
| Mangawhero Outfall  | 98.05      | 0.514     | 2.073  | 130.583  |         |
| Mangawhero Trimmed  | Dut 99.99  | 3.402     | 33.904 | 881.327  |         |
|                     |            |           |        |          |         |
| System              | 78.66      | 11.240 1  | 06.763 | 2868.355 |         |

#### \*\*\*\*\*

Link Flow Summary

| Link              | Туре    | Maximum<br> Flow <br>CMS | Occu |       | Maximum<br> Veloc <br>m/sec | Full | - ,  |
|-------------------|---------|--------------------------|------|-------|-----------------------------|------|------|
| CU MANGAWHERO OUT | CONDUIT | 2.073                    | 0    | 19:11 | 4.69                        | 1.10 | 1.00 |
| CULVERT01 -       | CONDUIT | 0.534                    | 0    | 14:01 | 1.21                        | 0.52 | 1.00 |
| CULVERT02         | CONDUIT | 0.872                    | 0    | 14:59 | 1.97                        | 0.47 | 1.00 |
| STREAM01          | CHANNEL | 1.761                    | 0    | 13:36 | 0.44                        | 0.01 | 0.36 |
| STREAM02          | CHANNEL | 2.118                    | 0    | 16:47 | 0.61                        | 0.01 | 0.46 |
| SWALE01 01        | CHANNEL | 0.301                    | 0    | 12:13 | 0.17                        | 0.03 | 0.51 |
| SWALE01 02        | CHANNEL | 3.057                    | 0    | 12:16 | 0.65                        | 0.14 | 0.57 |
| SWALE01 03        | CHANNEL | 2.865                    | 0    | 12:16 | 0.74                        | 0.13 | 0.65 |
| SWALE02 01        | CHANNEL | 0.599                    | 0    | 12:11 | 0.17                        | 0.07 | 0.60 |
| SWALE02 02        | CHANNEL | 5.073                    | 0    | 12:19 | 0.84                        | 0.23 | 0.61 |
| SWALE02 03        | CHANNEL | 4.911                    | 0    | 12:19 | 1.41                        | 0.23 | 0.68 |
| SWD01 ORFC        | ORIFICE | 0.185                    | 0    | 13:37 |                             |      | 1.00 |
| SWD02 ORFCE       | ORIFICE | 0.318                    | 0    | 14:59 |                             |      | 1.00 |
| SKGE SWC01A OT    | WEIR    | 0.000                    | 0    | 00:00 |                             |      | 0.00 |
| SKGE SWC01B OT    | WEIR    | 3.651                    | 0    | 12:11 |                             |      | 0.34 |
| SKGE SWC02A OT    | WEIR    | 3.835                    | 0    | 12:11 |                             |      | 0.35 |
| SKGE SWC02B OT    | WEIR    | 2.124                    | 0    | 12:10 |                             |      | 0.24 |
| SWD01 100-Y       | WEIR    | 0.049                    | 0    | 15:47 |                             |      | 0.17 |
| SWD01 10-Y        | WEIR    | 0.321                    | 0    | 14:38 |                             |      | 0.29 |
| SWD01 EMRGNCY OF  | WEIR    | 0.000                    | 0    | 00:00 |                             |      | 0.00 |
| SWD02_100-Y       | WEIR    | 0.017                    | 0    | 14:59 |                             |      | 0.29 |
| SWD02 10-Y        | WEIR    | 0.537                    | 0    | 14:59 |                             |      | 0.44 |
| SWD02_EMRGNCY_OF  | WEIR    | 0.000                    | 0    | 00:00 |                             |      | 0.00 |

#### 

|                   | Adjusted          |      |           | Fract       | ion of      | <br>Time    | in Flo     | w Clas       | s           |               |
|-------------------|-------------------|------|-----------|-------------|-------------|-------------|------------|--------------|-------------|---------------|
| Conduit           | /Actual<br>Length | Dry  | Up<br>Dry | Down<br>Dry | Sub<br>Crit | Sup<br>Crit | Up<br>Crit | Down<br>Crit | Norm<br>Ltd | Inlet<br>Ctrl |
| CU MANGAWHERO OUT | 1.00              | 0.01 | 0.00      | 0.00        | 0.14        | 0.85        | 0.00       | 0.00         | 0.01        | 0.00          |
| CULVERT01         | 1.00              | 0.00 | 0.01      | 0.00        | 0.99        | 0.00        | 0.00       | 0.00         | 0.20        | 0.00          |
| CULVERT02         | 1.00              | 0.01 | 0.01      | 0.00        | 0.99        | 0.00        | 0.00       | 0.00         | 0.79        | 0.00          |
| STREAM01          | 1.00              | 0.00 | 0.00      | 0.00        | 1.00        | 0.00        | 0.00       | 0.00         | 0.80        | 0.00          |
| STREAM02          | 1.00              | 0.01 | 0.00      | 0.00        | 0.99        | 0.00        | 0.00       | 0.00         | 0.00        | 0.00          |
| SWALE01 01        | 1.00              | 0.06 | 0.10      | 0.00        | 0.84        | 0.00        | 0.00       | 0.00         | 0.64        | 0.00          |
| SWALE01 02        | 1.00              | 0.06 | 0.00      | 0.00        | 0.94        | 0.00        | 0.00       | 0.00         | 0.47        | 0.00          |
| SWALE01 03        | 1.00              | 0.06 | 0.00      | 0.00        | 0.77        | 0.00        | 0.00       | 0.17         | 0.07        | 0.00          |
| SWALE02 01        | 1.00              | 0.06 | 0.09      | 0.00        | 0.85        | 0.00        | 0.00       | 0.00         | 0.68        | 0.00          |
| SWALE02 02        | 1.00              | 0.06 | 0.00      | 0.00        | 0.94        | 0.00        | 0.00       | 0.00         | 0.58        | 0.00          |
| SWALE02 03        | 1.00              | 0.06 | 0.00      | 0.00        | 0.34        | 0.00        | 0.00       | 0.59         | 0.01        | 0.00          |

### 

|                                             |                        | Hours Full              |                        | Hours<br>Above Full  | Hours<br>Capacity    |
|---------------------------------------------|------------------------|-------------------------|------------------------|----------------------|----------------------|
| Conduit                                     | Both Ends              | Upstream                | Dnstream               | Normal Flow          | Limited              |
|                                             |                        |                         |                        |                      |                      |
| CU_MANGAWHERO_OUT<br>CULVERT01<br>CULVERT02 | 9.64<br>12.38<br>12.87 | 14.25<br>12.38<br>12.87 | 9.64<br>12.70<br>14.32 | 9.64<br>0.01<br>0.01 | 9.64<br>3.26<br>0.01 |

Analysis begun on: Thu Jun 23 16:43:14 2022 Analysis ended on: Thu Jun 23 16:43:28 2022 Total elapsed time: 00:00:14

# 100-YEAR/24-HOUR ARI WITH 3.8°C ADJUSTED CLIMATE CHANGE (RCP8.5) (EXISTING CONDISTIONS CATCHMENT CACLUCATIONS CONSIDER NON-CLIMATE CHANGE ADJUSTED RAINFALL)

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.2 (Build 5.2.0)

| * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                     |                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                     |                                                       |
| Analysis Options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                     |                                                       |
| * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                     |                                                       |
| Flow Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CMS                                                                                                                                                                                 |                                                       |
| Process Models:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                     |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | YES                                                                                                                                                                                 |                                                       |
| RDII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NO                                                                                                                                                                                  |                                                       |
| Snowmelt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                     |                                                       |
| Groundwater                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                     |                                                       |
| Flow Routing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                     |                                                       |
| Ponding Allowed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                     |                                                       |
| Water Quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                     |                                                       |
| Infiltration Method<br>Flow Routing Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                     |                                                       |
| Surcharge Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                     |                                                       |
| Starting Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                     |                                                       |
| Ending Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                     |                                                       |
| Antecedent Dry Days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                     |                                                       |
| Report Time Step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                     |                                                       |
| Wet Time Step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                     |                                                       |
| Dry Time Step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                     |                                                       |
| Routing Time Step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                     |                                                       |
| Variable Time Step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                     |                                                       |
| Maximum Trials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                     |                                                       |
| Number of Threads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                     |                                                       |
| Head Tolerance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                     |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                     |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                     |                                                       |
| * * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Volume                                                                                                                                                                              | Depth                                                 |
| Runoff Quantity Continuity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | hectare-m                                                                                                                                                                           | mm                                                    |
| ******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                     |                                                       |
| Total Precipitation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3867.370                                                                                                                                                                            | 256.058                                               |
| Evaporation Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000                                                                                                                                                                               | 0.000                                                 |
| Infiltration Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3507.492                                                                                                                                                                            | 232.230                                               |
| Surface Runoff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 358.371                                                                                                                                                                             | 23.728                                                |
| Final Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.507                                                                                                                                                                               | 0.100                                                 |
| Continuity Error (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000                                                                                                                                                                               |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                     |                                                       |
| * * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Volume                                                                                                                                                                              | Volume<br>0^6 ltr                                     |
| Flow Routing Continuity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                     |                                                       |
| Dry Weather Inflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000                                                                                                                                                                               | 0.000                                                 |
| Wet Weather Inflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                     | 583.757                                               |
| Groundwater Inflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000                                                                                                                                                                               | 0.000                                                 |
| RDII Inflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000                                                                                                                                                                               | 0.000                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                     |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.000                                                                                                                                                                               | 0.000                                                 |
| External Inflow<br>External Outflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000                                                                                                                                                                               |                                                       |
| External Inflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.000                                                                                                                                                                               | 0.000                                                 |
| External Inflow<br>External Outflow<br>Flooding Loss<br>Evaporation Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000<br>356.656 3                                                                                                                                                                  | 0.000<br>566.599                                      |
| External Inflow<br>External Outflow<br>Flooding Loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000<br>356.656 3<br>0.000                                                                                                                                                         | 0.000<br>566.599<br>0.000                             |
| External Inflow<br>External Outflow<br>Flooding Loss<br>Evaporation Loss<br>Exfiltration Loss<br>Initial Stored Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000<br>356.656 3<br>0.000<br>0.000<br>1.594<br>0.000                                                                                                                              | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Flooding Loss<br>Evaporation Loss<br>Initial Stored Volume<br>Final Stored Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000<br>356.656 3<br>0.000<br>1.594<br>0.000<br>0.122                                                                                                                              | 0.000<br>566.599<br>0.000<br>0.000<br>15.937          |
| External Inflow<br>External Outflow<br>Flooding Loss<br>Evaporation Loss<br>Exfiltration Loss<br>Initial Stored Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000<br>356.656 3<br>0.000<br>0.000<br>1.594<br>0.000                                                                                                                              | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Flooding Loss<br>Evaporation Loss<br>Initial Stored Volume<br>Final Stored Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000<br>356.656 3<br>0.000<br>1.594<br>0.000<br>0.122                                                                                                                              | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Flooding Loss<br>Evaporation Loss<br>Exfiltration Loss<br>Initial Stored Volume<br>Final Stored Volume<br>Continuity Error (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000<br>356.656 3<br>0.000<br>1.594<br>0.000<br>0.122<br>-0.000                                                                                                                    | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Flooding Loss<br>Exaporation Loss<br>Initial Stored Volume<br>Final Stored Volume<br>Continuity Error (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000<br>356.656 3<br>0.000<br>1.594<br>0.000<br>0.122<br>-0.000                                                                                                                    | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Flooding Loss<br>Evaporation Loss<br>Exfiltration Loss<br>Final Stored Volume<br>Continuity Error (%)<br>Time-Step Critical Elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000<br>356.656 3<br>0.000<br>1.594<br>0.000<br>0.122<br>-0.000                                                                                                                    | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Flooding Loss<br>Evaporation Loss<br>Exfiltration Loss<br>Final Stored Volume<br>Continuity Error (%)<br>Time-Step Critical Elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000<br>356.656 3<br>0.000<br>1.594<br>0.000<br>0.122<br>-0.000                                                                                                                    | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Flooding Loss<br>Evaporation Loss<br>Exfiltration Loss<br>Final Stored Volume<br>Continuity Error (%)<br>Time-Step Critical Elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000<br>356.656 3<br>0.000<br>1.594<br>0.000<br>0.122<br>-0.000                                                                                                                    | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Flooding Loss<br>Evaporation Loss<br>Exfiltration Loss<br>Final Stored Volume<br>Continuity Error (%)<br>Time-Step Critical Elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000<br>356.656 3<br>0.000<br>1.594<br>0.000<br>0.122<br>-0.000                                                                                                                    | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Flooding Loss<br>Evaporation Loss<br>Exfiltration Loss<br>Final Stored Volume<br>Continuity Error (%)<br>Time-Step Critical Elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000<br>356.656 3<br>0.000<br>1.594<br>0.000<br>0.122<br>-0.000                                                                                                                    | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Flooding Loss<br>Exaporation Loss<br>Exfiltration Loss<br>Final Stored Volume<br>Continuity Error (%)<br>Time-Step Critical Elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000<br>356.656 3<br>0.000<br>1.594<br>0.000<br>0.122<br>-0.000                                                                                                                    | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Flooding Loss<br>Evaporation Loss<br>Initial Stored Volume<br>Continuity Error (%)<br>Time-Step Critical Elements<br><br>None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000<br>356.656 3<br>0.000<br>1.594<br>0.000<br>0.122<br>-0.000                                                                                                                    | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Flooding Loss<br>Exaporation Loss<br>Initial Stored Volume<br>Continuity Error (%)<br>*********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000<br>356.656 3<br>0.000<br>1.594<br>0.000<br>0.122<br>-0.000                                                                                                                    | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Flooding Loss<br>Evaporation Loss<br>Initial Stored Volume<br>Final Stored Volume<br>Continuity Error (%)<br>*********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000<br>356.656 3<br>0.000<br>1.594<br>0.000<br>0.122<br>-0.000                                                                                                                    | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Flooding Loss<br>Exaporation Loss<br>Exfiltration Loss<br>Final Stored Volume<br>Continuity Error (%)<br>*********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000<br>356.656 3<br>0.000<br>1.594<br>0.000<br>0.122<br>-0.000                                                                                                                    | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Flooding Loss<br>Evaporation Loss<br>Initial Stored Volume<br>Continuity Error (%)<br>*********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000<br>356.656 3<br>0.000<br>1.594<br>0.000<br>0.122<br>-0.000                                                                                                                    | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Flooding Loss<br>Evaporation Loss<br>Initial Stored Volume<br>Continuity Error (%)<br>*********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000<br>356.656 3<br>0.000<br>1.594<br>0.000<br>0.122<br>-0.000                                                                                                                    | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Flooding Loss<br>Exaporation Loss<br>Initial Stored Volume<br>Final Stored Volume<br>Continuity Error (%)<br>*********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000<br>356.656 3<br>0.000<br>1.594<br>0.000<br>0.122<br>-0.000                                                                                                                    | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Flooding Loss<br>Exaporation Loss<br>Initial Stored Volume<br>Continuity Error (%)<br>*********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000<br>356.656 3<br>0.000<br>1.594<br>0.000<br>0.122<br>-0.000                                                                                                                    | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Flooding Loss<br>Evaporation Loss<br>Final Stored Volume<br>Continuity Error (%)<br>*********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.000<br>356.656 3<br>0.000<br>1.594<br>0.000<br>0.122<br>-0.000<br>******                                                                                                          | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Evaporation Loss<br>Evaporation Loss<br>Initial Stored Volume<br>Continuity Error (%)<br>*********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000<br>3356.656 3<br>0.000<br>1.594<br>0.000<br>0.122<br>-0.000<br>******                                                                                                         | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Flooding Loss<br>Evaporation Loss<br>Initial Stored Volume<br>Continuity Error (%)<br>*********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000<br>3356.656 3<br>0.000<br>1.594<br>0.000<br>0.122<br>-0.000<br>                                                                                                               | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Evaporation Loss<br>Evaporation Loss<br>Initial Stored Volume<br>Continuity Error (%)<br>*********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000<br>3356.656 3<br>0.000<br>1.594<br>0.000<br>0.122<br>-0.000<br>                                                                                                               | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Flooding Loss<br>Evaporation Loss<br>Initial Stored Volume<br>Continuity Error (%)<br>*********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000<br>3356.656 3<br>0.000<br>1.594<br>0.000<br>0.122<br>-0.000<br>                                                                                                               | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Flooding Loss<br>Evaporation Loss<br>Initial Stored Volume<br>Continuity Error (%)<br>*********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000<br>3356.656 3<br>0.000<br>1.594<br>0.000<br>0.122<br>-0.000<br>                                                                                                               | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Flooding Loss<br>Evaporation Loss<br>Initial Stored Volume<br>Continuity Error (%)<br>*********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000<br>3356.656 3<br>0.000<br>1.594<br>0.000<br>0.122<br>-0.000<br>                                                                                                               | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Evaporation Loss<br>Initial Stored Volume<br>Continuity Error (%)<br>*********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000<br>3356.656 3<br>0.000<br>1.594<br>0.000<br>0.122<br>-0.000<br>                                                                                                               | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Evaporation Loss<br>Initial Stored Volume<br>Continuity Error (%)<br>Time-Step Critical Elements<br>Time-Step Critical Elements<br>None<br>Time-Step Critical Elements<br>Time-Step Critic | 0.000<br>3356.656 3<br>0.000<br>1.594<br>0.000<br>0.122<br>-0.000<br>                                                                                                               | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Evaporation Loss<br>Evaporation Loss<br>Initial Stored Volume<br>Continuity Error (%)<br>*********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000<br>336.656 3<br>0.000<br>1.594<br>0.000<br>0.122<br>-0.000<br>                                                                                                                | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Evaporation Loss<br>Initial Stored Volume<br>Continuity Error (%)<br>*********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000<br>356.656 3<br>0.000<br>1.594<br>0.000<br>0.122<br>-0.000<br>                                                                                                                | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Evaporation Loss<br>Evaporation Loss<br>Initial Stored Volume<br>Continuity Error (%)<br>*********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.000<br>356.656 3<br>0.000<br>1.594<br>0.000<br>0.122<br>-0.000<br>******<br>tdexes<br>*****<br>Nodes<br>******<br>time steps.<br>: 0.14 sec<br>: 0.50 sec<br>: 0.50 sec<br>: 0.00 | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Flooding Loss<br>Evaporation Loss<br>Initial Stored Volume<br>Continuity Error (%)<br>*********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000<br>3356.656 3<br>0.000<br>0.000<br>1.594<br>0.000<br>0.122<br>-0.000<br>                                                                                                      | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Evaporation Loss<br>Evaporation Loss<br>Evaporation Loss<br>Exfiltration Loss<br>Initial Stored Volume<br>Continuity Error (%)<br>Continuity Error (%)<br>Continuity Error (%)<br>Mone<br>***********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000<br>356.656 3<br>0.000<br>0.000<br>1.594<br>0.000<br>0.122<br>-0.000<br>                                                                                                       | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Evaporation Loss<br>Evaporation Loss<br>Exfiltration Loss<br>Initial Stored Volume<br>Continuity Error (%)<br>Time-Step Critical Elements<br>Time-Step Critical Elements<br>None<br>Terrestron Control Internet<br>Key State State State State State<br>Link SKGE SWC01A_OT (11)<br>Link SKGE_SWC01A_OT (11)<br>Link SKGE_SWC01B_OT (10)<br>Link SWD01_10-Y (1)<br>Link SWD01_10-Y (1)<br>Link SWD01_10-Y (1)<br>State State State State<br>Convergence obtained at all<br>Terrestron Step Summary<br>Time Step State Average Iterations per Step<br>% of Steps Not Converging<br>Time Step Frequencies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.000<br>336.656 3<br>0.000<br>1.594<br>0.000<br>0.122<br>-0.000                                                                                                                    | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Evaporation Loss<br>Initial Stored Volume<br>Continuity Error (%)<br>*********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000<br>3356.656 3<br>0.000<br>1.594<br>0.000<br>0.122<br>-0.000                                                                                                                   | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Evaporation Loss<br>Evaporation Loss<br>Initial Stored Volume<br>Continuity Error (%)<br>Continuity Error (%)<br>Mine-Step Critical Elements<br>Mone<br>Minimum Step SwC01A OT (11)<br>Link SKGE_SWC01A OT (11)<br>Link SKGE_SWC01A OT (11)<br>Link SKGE_SWC01A OT (11)<br>Link SWD01_OFFC (1)<br>Link SWD01_10-Y (1)<br>Link SWD01_10-Y (1)<br>Most Frequent Nonconverging<br>Most Frequent Nonconverging<br>Minimum Time Step<br>Average Time Step Summary<br>Minimum Time Step<br>Average Iterations per Step<br>% of Steps Not Converging<br>Time Step Frequencies<br>0.500 - 0.315 sec<br>0.315 - 0.199 sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000<br>3356.656 3<br>0.000<br>1.594<br>0.000<br>0.122<br>-0.000                                                                                                                   | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Evaporation Loss<br>Evaporation Loss<br>Exfiltration Loss<br>Initial Stored Volume<br>Continuity Error (%)<br>Continuity Error (%)<br>Time-Step Critical Elements<br>************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000<br>356.656 3<br>0.000<br>1.594<br>0.000<br>0.122<br>-0.000                                                                                                                    | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |
| External Inflow<br>External Outflow<br>Evaporation Loss<br>Evaporation Loss<br>Initial Stored Volume<br>Continuity Error (%)<br>Continuity Error (%)<br>Mine-Step Critical Elements<br>Mone<br>Minimum Step SwC01A OT (11)<br>Link SKGE_SWC01A OT (11)<br>Link SKGE_SWC01A OT (11)<br>Link SKGE_SWC01A OT (11)<br>Link SWD01_OFFC (1)<br>Link SWD01_10-Y (1)<br>Link SWD01_10-Y (1)<br>Most Frequent Nonconverging<br>Most Frequent Nonconverging<br>Minimum Time Step<br>Average Time Step Summary<br>Minimum Time Step<br>Average Iterations per Step<br>% of Steps Not Converging<br>Time Step Frequencies<br>0.500 - 0.315 sec<br>0.315 - 0.199 sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000<br>3356.656 3<br>0.000<br>1.594<br>0.000<br>0.122<br>-0.000                                                                                                                   | 0.000<br>566.599<br>0.000<br>0.000<br>15.937<br>0.000 |

### \*\*\*\*\* Subcatchment Runoff Summary

| Subcatchment                  | Total<br>Precip<br>mm | Total<br>Runon<br>mm | Total<br>Evap<br>mm | Total<br>Infil<br>mm | Imperv<br>Runoff<br>mm | Perv<br>Runoff<br>mm | Total<br>Runoff<br>mm | Total<br>Runoff<br>10^6 ltr | Peak<br>Runoff<br>CMS | Runofi<br>Coefi |
|-------------------------------|-----------------------|----------------------|---------------------|----------------------|------------------------|----------------------|-----------------------|-----------------------------|-----------------------|-----------------|
| C W01                         | 256.23                | 0.00                 | 0.00                | 71.96                | 127.11                 | 56.15                | 183.26                | 4.39                        | 0.71                  | 0.715           |
| C_W02                         | 256.23                | 0.00                 | 0.00                | 72.10                | 127.11                 | 56.01                | 183.12                | 5.26                        | 0.83                  | 0.71            |
| X SWC01B                      | 193.14                | 0.00                 | 0.00                | 132.74               | 9.58                   | 50.75                | 60.33                 | 9.26                        | 0.67                  | 0.31            |
| EX SWC02A                     | 193.14                | 0.00                 | 0.00                | 133.56               | 9.58                   | 49.92                | 59.50                 | 9.91                        | 0.69                  | 0.30            |
| SWC02B                        | 193.14                | 0.00                 | 0.00                | 131.00               | 9.58                   | 52.49                | 62.07                 | 5.10                        | 0.40                  | 0.32            |
| Mangawhero_Existing_Co<br>188 | onditions             | 256.23               | 0.00                | 0.00                 | 233.71                 | 12.72                | 9.70                  | 22.42                       | 1105.56               | 39              |
| Mangawhero Extended           | 256.23                | 0.00                 | 0.00                | 232.84               | 13.58                  | 9.70                 | 23.28                 | 1179.06                     | 42.00                 | 0.09            |
| langawhero Trimmed            | 256.23                | 0.00                 | 0.00                | 233.71               | 12.72                  | 9.70                 | 22.42                 | 1101.66                     | 39.41                 | 0.08            |
| ff-Site Catchment             | 256.23                | 0.00                 | 0.00                | 195.34               | 5.09                   | 55.76                | 60.85                 | 66.81                       | 1.87                  | 0.23            |
| WC01B<br>WC02A                | 256.23<br>256.23      | 0.00                 | 0.00                | 14.24<br>14.26       | 229.22<br>229.22       | 11.38<br>11.37       | 240.60<br>240.58      | 36.91<br>40.05              | 4.33<br>4.55          | 0.93<br>0.93    |
| SWC02B                        | 256.23                | 0.00                 | 0.00                | 14.21                | 229.23                 | 11.41                | 240.64                | 19.76                       | 2.49                  | 0.93            |

### \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \* \*

Node Depth Summary \*\*\*\*\*\*\*\*\*

|                                  | A              | verage M  | aximum | Maximum | Time | of Max  | Reported  |
|----------------------------------|----------------|-----------|--------|---------|------|---------|-----------|
|                                  |                |           |        |         |      |         | Max Depth |
|                                  | Туре           |           |        |         |      |         |           |
| REAM OUTFALL                     | JUNCTION       |           |        |         |      |         |           |
| 01 01                            | JUNCTION       | 0.13      | 0.75   | 57.75   | 0    | 20:26   | 0.75      |
| 1 02                             | JUNCTION       | 0.39      | 1.35   | 57.75   | 0    | 20:26   | 1.35      |
| 1 03                             | JUNCTION       | 0.54      | 1.65   | 57.75   | 0    | 20:26   | 1.65      |
|                                  | JUNCTION       |           |        | 59.21   | 0    | 14:57   | 0.71      |
| 02 02                            | JUNCTION       | 0.29      | 1.31   | 59.21   | 0    | 14:56   | 1.31      |
| 0203                             | JUNCTION       | 0.37      | 1.60   | 59.20   | 0    | 14:58   | 1.60      |
| D01 CU OUTLET                    | JUNCTION       | 0.57      | 2.33   | 57 73   | 0    | 19.36   | 2 33      |
| D01 SCRUFFY OUT                  | JUNCTION       | 0.52      | 2.24   | 57.74   | 0    | 19:51   | 2.24      |
| D02_CU_OUTLET<br>D02_SCRUFFY_OUT | JUNCTION       | 0.85      | 3.08   | 57.73   | 0    | 19:36   | 3.08      |
| D02 SCRUFFY OUT                  | JUNCTION       | 0.57      | 2.87   | 58.07   | 0    | 18:20   | 2.87      |
| SWD01_OUT                        | OUTFALL        | 0.00      | 0.00   | 55.50   | 0    | 00:00   | 0.00      |
| SWD02 OUT                        | OUTFALL        | 0.00      | 0.00   | 54.65   | 0    | 00:00   | 0.00      |
| ngawehro_Existing                | g_Conditions_O | ut OUTFAL | L (    | 0.00    | 0.00 | 41.45   | 0 00:00   |
| ngawhero_Extended                | d_Out OUTFALL  | 0.00      | 0.0    | 00 41.  | 45   | 0 00:00 | 0.00      |
| ngawhero Outfall                 | OUTFALL        | 0.27      | 0.75   | 52.75   | 0    | 13:45   | 0.75      |
| ngawhero_Trimmed                 | Out OUTFALL    | 0.00      | 0.00   | ) 41.4  | 5    | 0 00:00 | 0.00      |
| GE_SWC01A                        | STORAGE        | 0.41      | 1.75   | 57.75   | 0    | 20:26   | 1.75      |
| GE_SWC01B                        | STORAGE        | 0.69      | 1.87   | 57.87   | 0    | 12:11   | 1.86      |
| GE_SWC02A                        |                |           |        |         |      |         |           |
| GE_SWC02B                        | STORAGE        | 0.66      | 1.76   | 59.76   | 0    | 12:10   | 1.76      |
| D01                              |                |           |        |         |      |         |           |
| D02                              | STORAGE        | 0.68      | 2.20   | 59.20   | 0    | 14:58   | 2.20      |

#### \*\*\*\*\*

Node Inflow Summary

| Node                                      | Туре                 | Lateral<br>Inflow<br>CMS | Total<br>Inflow<br>CMS | Time<br>Occu<br>days | of Max<br>urrence<br>hr:min | Inflow<br>Volume<br>10^6 ltr | Total<br>Inflow<br>Volume<br>10^6 ltr | Balance<br>Error<br>Percent |  |
|-------------------------------------------|----------------------|--------------------------|------------------------|----------------------|-----------------------------|------------------------------|---------------------------------------|-----------------------------|--|
| STREAM OUTFALL                            |                      |                          |                        |                      |                             |                              | 156                                   |                             |  |
|                                           |                      | 0.000                    | 0 360                  | 0                    | 12.10                       | 0                            | 0 695                                 | 2 310                       |  |
| SW01_02                                   | JUNCTION<br>JUNCTION | 0.000                    | 4 162                  | 0                    | 12.12                       | 0                            | 32 9                                  | -0.021                      |  |
| SW01 03                                   | JUNCTION             | 0.000                    | 3 421                  | 0                    | 12.15                       | 0                            | 0.695<br>32.9<br>30.4<br>0.776        | 0.216                       |  |
| SW02 01                                   |                      | 0.000                    | 0.697                  | 0                    | 12:11                       | Ő                            | 0.776                                 | 1.380                       |  |
|                                           |                      | 0.000                    | 6.778                  | 0                    | 12:10                       | 0                            | 53.2                                  | -0.214                      |  |
| SW02_02<br>SW02_03                        | JUNCTION             | 0.000                    | 5.781                  | 0                    | 12:18                       | 0                            | 52.3                                  | 0.203                       |  |
| SWD01 CU OUTLET                           | JUNCTION             |                          |                        |                      |                             |                              | 101                                   |                             |  |
| SWD01 SCRUFFY OUT                         | JUNCTION             |                          |                        |                      | 13:26                       |                              | 34.1                                  |                             |  |
| SWD02 CU OUTLET                           | JUNCTION             | 0.000                    | 3.053                  | 0                    | 13:06                       | 0                            | 157                                   | 0.064                       |  |
| SWD02 SCRUFFY OUT                         | JUNCTION             | 0.000                    | 0.993                  | 0                    | 13:54                       | 0                            | 56.8                                  | 0.000                       |  |
| EX SWD01 OUT                              | OUTFALL              | 0.669                    | 0.669                  | 0                    | 12:09                       | 9.26                         | 9.26                                  | 0.000                       |  |
| EX SWD02 OUT                              |                      |                          |                        |                      |                             |                              |                                       |                             |  |
| Mangawehro Existing                       | Conditions           | Out OUTFALL              | 39                     | .545                 | 39.545                      | 0 12:14                      | 1.11e+03                              | 1.11e+03                    |  |
| Mangawhero_Extended<br>Mangawhero Outfall | Out OUTFALL          | 41.999                   | 41.9                   | 99                   | 0 12:14                     | 1.18e+03                     | 1.18e+03                              | 0.000                       |  |
| Mangawhero Outfall                        | OUTFALL              | 0.000                    | 2.191                  | 0                    | 19:36                       | 0                            | 156                                   | 0.000                       |  |
| Mangawhero Trimmed                        | Out OUTFALL          | 39.405                   | 39.40                  | 5                    | 0 12:14                     | 1.1e+03                      | 1.1e+03                               | 0.000                       |  |
| SKGE SWC01A                               |                      |                          |                        |                      |                             |                              |                                       |                             |  |
| SKGE_SWC01B                               | STORAGE              | 4.331                    | 4.331                  | 0                    | 12:09                       | 36.9                         | 36.9                                  | -0.001                      |  |
| SKGE_SWC02A                               | STORAGE              | 4.552                    |                        |                      | 12:09                       |                              |                                       | -0.000                      |  |
| SKGE_SWC02B                               | STORAGE              | 2.485                    |                        |                      | 12:09                       |                              |                                       |                             |  |
| SWD01                                     | STORAGE              | 0.712                    | 3.687                  | 0                    | 12:14                       | 4.39                         | 34.7                                  | -0.014                      |  |
| SWD02                                     | STORAGE              | 0.832                    | 6.048                  | 0                    | 12:16                       | 5.26                         | 57.4                                  | -0.025                      |  |

\*\*\*\*\*

Node Surcharge Summary

No nodes were surcharged.

No nodes were flooded.

### 

|              | Average<br>Volume | Avg<br>Pcnt | Evap<br>Pcnt | Exfil<br>Pcnt | Maximum<br>Volume | Max<br>Pcnt | Time of<br>Occurre |       | Maximum<br>Outflow |
|--------------|-------------------|-------------|--------------|---------------|-------------------|-------------|--------------------|-------|--------------------|
| Storage Unit | 1000 m3           | Full        | Loss         | Loss          | 1000 m3           | Full        | days hr            | min   | CMS                |
| SKGE SWC01A  | 0.173             | 21          | 0            | 105           | 0.736             | 88          | 0 20               | ):26  | 0.029              |
| SKGE SWC01B  | 0.659             | 35          | 0            | 12            | 1.778             | 94          | 0 12               | 2:11  | 4.195              |
| SKGE SWC02A  | 0.680             | 34          | 0            | 12            | 1.884             | 94          | 0 12               | 2:11  | 4.410              |
| SKGE SWC02B  | 0.331             | 33          | 0            | 12            | 0.879             | 88          | 0 12               | 2:10  | 2.433              |
| SWD01        | 6.265             | 14          | 0            | 0             | 18.728            | 43          | 0 20               | 26:26 | 0.602              |
| SWD02        | 7.845             | 16          | 0            | 0             | 26.961            | 57          | 0 14               | 1:58  | 0.993              |

#### 

|                     | Flow       | Avg       | Max    | Total    |          |
|---------------------|------------|-----------|--------|----------|----------|
|                     | Freq       | Flow      | Flow   | Volume   |          |
| Outfall Node        | Pcnt       | CMS       | CMS    | 10^6 ltr |          |
|                     |            |           |        |          |          |
| EX SWD01 OUT        | 36.50      | 0.098     | 0.669  | 9.256    |          |
| EX_SWD02_OUT        | 37.46      | 0.155     | 1.093  | 15.004   |          |
| Mangawehro_Existing | Conditions | Out 99.99 | 4.26   | 7 39.545 | 1105.562 |
| Mangawhero Extended | Out 99.99  | 4.550     | 41.999 | 1179.066 |          |
| Mangawhero Outfall  | 98.17      | 0.613     | 2.191  | 156.031  |          |
| Mangawhero Trimmed  | Out 99.99  | 4.252     | 39.405 | 1101.664 |          |
|                     |            |           |        |          |          |
| System              | 78.68      | 13.934 1  | 23.925 | 3566.582 |          |

#### \*\*\*\*\*

Link Flow Summary

| Link              | Туре    | Maximum<br> Flow <br>CMS | Occu |       | Maximum<br> Veloc <br>m/sec | Full | - ,  |
|-------------------|---------|--------------------------|------|-------|-----------------------------|------|------|
| CU_MANGAWHERO_OUT | CONDUIT | 2.191                    |      | 19:36 |                             |      |      |
| CULVERT01         | CONDUIT | 0.602                    | 0    | 13:26 | 1.36                        |      |      |
| CULVERT02         | CONDUIT |                          |      | 13:54 |                             |      |      |
| STREAM01          | CHANNEL | 2.132                    | 0    | 13:06 | 0.48                        |      |      |
| STREAM02          | CHANNEL | 2.339                    | 0    | 12:18 |                             |      |      |
| SWALE01_01        | CHANNEL | 0.360                    | 0    | 12:12 | 0.17                        | 0.04 | 0.70 |
| SWALE01_02        | CHANNEL | 3.421                    | 0    | 12:15 | 0.63                        | 0.16 | 0.71 |
| SWALE01 03        | CHANNEL | 3.177                    | 0    | 12:15 | 0.76                        | 0.15 | 0.78 |
| SWALE02 01        | CHANNEL | 0.697                    | 0    | 12:11 | 0.17                        | 0.08 | 0.67 |
| SWALE02 02        | CHANNEL | 5.781                    | 0    | 12:18 | 0.85                        | 0.27 | 0.68 |
| SWALE02 03        | CHANNEL | 5.514                    | 0    | 12:18 | 1.18                        | 0.26 | 0.76 |
| SWD01 ORFC        | ORIFICE | 0.185                    | 1    | 04:03 |                             |      | 1.00 |
| SWD02 ORFCE       | ORIFICE | 0.329                    | 0    | 13:54 |                             |      | 1.00 |
| SKGE SWC01A OT    | WEIR    | 0.187                    | 0    | 14:07 |                             |      | 0.25 |
| SKGE SWC01B OT    | WEIR    | 4.162                    | 0    | 12:11 |                             |      | 0.37 |
| SKGE SWC02A OT    | WEIR    | 4.375                    | 0    | 12:11 |                             |      | 0.38 |
| SKGE SWC02B OT    | WEIR    | 2.416                    | 0    | 12:10 |                             |      | 0.26 |
| SWD01 100-Y       | WEIR    | 0.064                    | 0    | 14:36 |                             |      | 0.29 |
| SWD01 10-Y        | WEIR    | 0.371                    | 0    | 13:37 |                             |      | 0.39 |
| SWD01 EMRGNCY OF  | WEIR    | 0.000                    | 0    | 00:00 |                             |      | 0.00 |
| SWD02 100-Y       | WEIR    | 0.024                    | 0    | 14:58 |                             |      | 0.37 |
| SWD02 10-Y        | WEIR    | 0.657                    | 0    | 14:58 |                             |      | 0.50 |
| SWD02_EMRGNCY_OF  | WEIR    | 0.000                    | 0    | 00:00 |                             |      | 0.00 |

#### 

Flow Classification Summary

|                   | Adjusted          |      |           |             | ion of      |             |            |              |             |               |
|-------------------|-------------------|------|-----------|-------------|-------------|-------------|------------|--------------|-------------|---------------|
| Conduit           | /Actual<br>Length | Dry  | Up<br>Dry | Down<br>Dry | Sub<br>Crit | Sup<br>Crit | Up<br>Crit | Down<br>Crit | Norm<br>Ltd | Inlet<br>Ctrl |
| CU MANGAWHERO OUT | 1.00              | 0.01 | 0.00      | 0.00        | 0.19        | 0.79        | 0.00       | 0.00         | 0.01        | 0.00          |
| CULVERT01         | 1.00              | 0.00 | 0.01      | 0.00        | 0.99        | 0.00        | 0.00       | 0.00         | 0.15        | 0.00          |
| CULVERT02         | 1.00              | 0.00 | 0.01      | 0.00        | 0.99        | 0.00        | 0.00       | 0.00         | 0.75        | 0.00          |
| STREAM01          | 1.00              | 0.00 | 0.00      | 0.00        | 1.00        | 0.00        | 0.00       | 0.00         | 0.76        | 0.00          |
| STREAM02          | 1.00              | 0.00 | 0.00      | 0.00        | 1.00        | 0.00        | 0.00       | 0.00         | 0.00        | 0.00          |
| SWALE01 01        | 1.00              | 0.06 | 0.10      | 0.00        | 0.84        | 0.00        | 0.00       | 0.00         | 0.58        | 0.00          |
| SWALE01 02        | 1.00              | 0.06 | 0.00      | 0.00        | 0.94        | 0.00        | 0.00       | 0.00         | 0.42        | 0.00          |
| SWALE01 03        | 1.00              | 0.06 | 0.00      | 0.00        | 0.83        | 0.00        | 0.00       | 0.11         | 0.07        | 0.00          |
| SWALE02 01        | 1.00              | 0.06 | 0.07      | 0.00        | 0.87        | 0.00        | 0.00       | 0.00         | 0.66        | 0.00          |
| SWALE0202         | 1.00              | 0.06 | 0.00      | 0.00        | 0.94        | 0.00        | 0.00       | 0.00         | 0.56        | 0.00          |
| SWALE02_03        | 1.00              | 0.06 | 0.00      | 0.00        | 0.38        | 0.00        | 0.00       | 0.56         | 0.01        | 0.00          |

### 

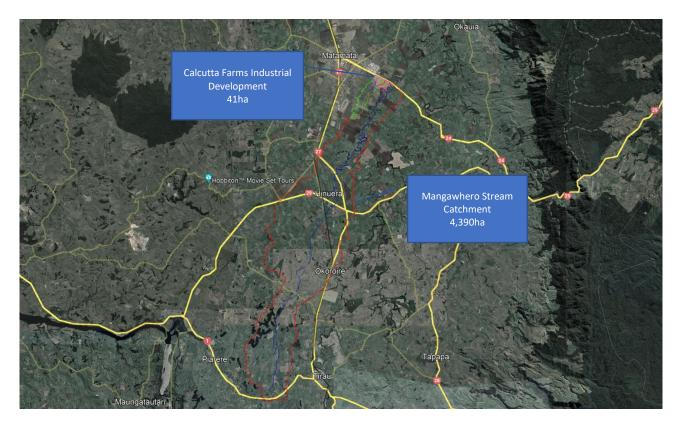
| Conduit           | Both Ends | Hours Full<br>Upstream |       | Hours<br>Above Full<br>Normal Flow | Hours<br>Capacity<br>Limited |
|-------------------|-----------|------------------------|-------|------------------------------------|------------------------------|
| CU_MANGAWHERO_OUT | 13.38     | 16.87                  | 13.38 | 13.38                              | 13.38                        |
| CULVERT01         | 15.55     | 15.55                  | 15.71 | 0.01                               | 2.57                         |
| CULVERT02         | 15.75     | 15.75                  | 16.94 | 0.01                               | 0.01                         |

Analysis begun on: Thu Jun 23 16:47:24 2022 Analysis ended on: Thu Jun 23 16:47:38 2022 Total elapsed time: 00:00:14 Appendix K – Mangawhero Stream Memo



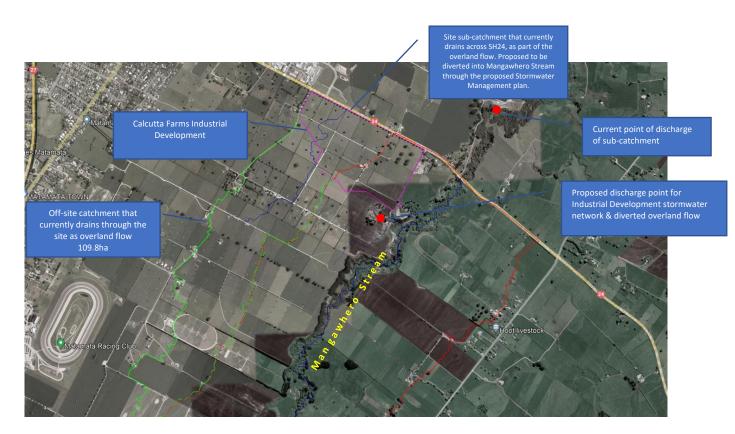


Level 4, 18 London Street PO Box 9041, Hamilton 3240 New Zealand


> +64 7 838 0144 consultants@bbo.co.nz www.bbo.co.nz

# Memo

| То       | Amir Montakhab - CKL                                                                                            |
|----------|-----------------------------------------------------------------------------------------------------------------|
| From     | Constantinos Fokianos                                                                                           |
| Date     | 23 June 2022                                                                                                    |
| Job No.  | 146930.02                                                                                                       |
| Job name | Calcutta Farms – Industrial Area                                                                                |
| Subject  | Analysis on the impacts on proposed Industrial Are stormwater Management<br>plan to Mangawhero Stream - Updated |


A high-level catchment analysis of Mangawhero Stream catchment was conducted to assess possible effects to Mangawhero Stream by the proposed Calcutta Farms Industrial Area plan change.

The stream's catchment was delineated using the available topographic mapping and aerial photographic information. The catchment was delineated to occupy an area of approximately 4,930ha. Stream's average slope was estimated using the modified Taylor-Schwarz Method to approximately 0.1%. The flat grade of the stream is evident from the extended meandering of the stream, yielding a sinuosity of over 1.5.



**Figure 1.** Mangawhero Stream Catchment at SH24 bridge. Aerial imagery by Google Earth.





### **Figure 2.** Calcutta Farms Industrial Development Catchment. Aerial imagery by Google Earth.

Due to the lack of any actual flow data from Mangawhero Stream, two different methods were used to determine the design flows. The first method included modelling the sub-catchment in EPA SWMM using HIRDS rainfall data (as described previously on the stormwater section of the engineering report). The second method that was used to confirm the model's output was the method described in "Flood Frequency in New Zealand" by McKerchar & Pearson. This method was used to calculate the 100-year, non-climate change adjusted flow and compare it to the SWMM model output. This method was used as an additional reference in the stormwater analysis and design of the new SH27 bridge over Mangawhero Stream which has been reviewed and accepted by Waka Kotahi. **Appendix A** provides brief description of the calculations based on this method.

In EPA SWMM model, three catchment configurations were considered:

- <u>Mangawhero Existing Conditions</u> refers to Mangawhero Catchment in current conditions, as delineated based on LIDAR, LINZ elevation data, and aerial photographic information.
- <u>Mangawhero Extended</u> refers to the extended catchment with the attachment of the additional subcatchment (24ha) of Calcutta Farms Industrial Area that currently drains across SH24 and discharges into Mangawhero Stream approximately 500 meters downstream of SH24 bridge and the off-site upstream catchment (110ha) of the overland flow. This Catchment was used to estimate the raise of the imperviousness percentage to of the whole catchment due to the proposed development, and total runoff into the proposed point of discharge.
- <u>Mangawhero Trimmed</u> refers to Mangawhero Stream Catchment without the Calcutta Farms Industrial Area sub-catchment that currently drains into the stream upstream of the SH24 bridge. This catchment was then used in combination with the proposed Industrial Area layout to determine the discharge rate at SH24 bridge and compare it to the current conditions Catchment flows.

The catchments characteristics are shown in the table below.



Level 4, 18 London Street PO Box 9041, Hamilton 3240 New Zealand

> +64 7 838 0144 consultants@bbo.co.nz www.bbo.co.nz



BLOXAM BURNETT & OLLIVER Table 1. Modelled catchments Characteristics



|           |                     | Ву       | SD          |
|-----------|---------------------|----------|-------------|
| Client :  |                     | Checked  | CF          |
|           |                     | Approved |             |
| Project : | CALCUTTA INDUSTRIAL | Revision | А           |
| Project : | DEVELOPMENT         | Date     | 03/05/20222 |

#### Mangawhero Stream Catchment Characteristics at SH24 Bridge

|                                             |           |          |                  |                   |                 |                      |       |            |                     |                   |         |         | Inf            | iltration (He  | orton) |
|---------------------------------------------|-----------|----------|------------------|-------------------|-----------------|----------------------|-------|------------|---------------------|-------------------|---------|---------|----------------|----------------|--------|
| ID                                          | ۸         | А        | ۸                | ٨                 | 1.              | Width                | Slope | Percent    | n                   | n                 | D-Store | D-Store | f              | f              | Decay  |
|                                             | A         | ~        | A <sub>imp</sub> | A <sub>perv</sub> | L <sub>fp</sub> | (A/L <sub>fp</sub> ) | Slope | Impervious | n <sub>impwev</sub> | n <sub>perv</sub> | Imperv. | Perv.   | ۱ <sub>i</sub> | ۱ <sub>0</sub> | Const. |
|                                             | m²        | ha       | m²               | m²                | m               | m                    | %     | %          |                     |                   | mm      | mm      |                |                |        |
| Mangawhero_Existing_Conditions <sup>1</sup> | 49305433  | 4930.543 | 2465271.7        | 46840161          | 28430           | 1734.3               | 0.1   | 5.0        | 0.015               | 0.15              | 2       | 5       | 33.87          | 6.6            | 4      |
| Mangawhero_Extended <sup>2</sup>            | 50643543  | 5064.354 | 2704365.2        | 47939178          | 28420           | 1782.0               | 0.1   | 5.3        | 0.015               | 0.15              | 2       | 5       | 33.87          | 6.6            | 4      |
| Mangawhero_Trimmed <sup>3</sup>             | 49131553  | 4913.155 | 2456577.7        | 46674975          | 28420           | 1728.8               | 0.1   | 5.0        | 0.015               | 0.15              | 2       | 5       | 33.87          | 6.6            | 4      |
| Offsite Catchment                           | 1097840.8 | 109.7841 | 21956.82         | 1075884           | 2480            | 442.7                | 0.1   | 2.0        | 0.015               | 0.15              | 2       | 5       | 33.87          | 6.6            | 4      |

<sup>1</sup> Mangawhero\_Existing Conditions refers to Mangawhero Catchment in current conditions, as delineated based on LIDAR, LINZ elevation data, and aerial photographic information.

<sup>2</sup> Mangawhero\_Extended refers to the extended catchment with the attachment of the additional off-site catchment and sub-catchment of Calcutta Farms Industrial Area that currently drains across SH24 and discharges into Mangawhero Stream approximately 500 meters downstream of SH24 bridge

<sup>3</sup> Mangawhero\_Trimmed refers to Mangawhero Stream Catchment without the Calcutta Farms Industrial Area sub-catchment that currently drains into the stream upstream of the SH24 bridge.

GLOSSARY:

 A: Catchment area
 n<sub>imperv</sub>: Manning Number for impervious area

 A<sub>imp</sub>: Impervious area of a catchment
 n<sub>perv</sub>: Manning Number for pervious area

 A<sub>per</sub>: Pervious area of a catchment
 D-Store Imperv.: Depth of depression storage on impervious area

 I<sub>tp</sub>: Length of overland flow
 D-Store Perv.: Depth of depression storage on pervious area

 Slope: Average surface slope
 f;:Maximum rate on the Horton infiltration curve

 $f_{\rm o}{:}{\rm Minimum}$  rate on the Horton infiltration curve Decay Const.: Decay constant for the Horton infiltration curve





+64 7 838 0144 consultants@bbo.co.nz www.bbo.co.nz

Table 2 presents all the calculated flows. The 100-year flows estimated by two entirely different methods seem to converge to a satisfactory level. Considering that the peak discharge from the proposed industrial area occurs on a different time than the Mangawhero Stream peak flow, the combined 100-year flow at SH24 bridge is 0.14m<sup>3</sup>/s higher than the calculated flow for the current catchment runoff during the 100-year, climate change adjusted design rainfall.

 Table 2. Calculated flows (m³/s)

| ARI      | SWMM MODEL      | -                  |                    |                     | McKerchar &         |
|----------|-----------------|--------------------|--------------------|---------------------|---------------------|
|          | Mangawhero Stre | eam - Existing     | Proposed condition | ons (combination of | Pearson             |
|          | Catchment       |                    | Mangawhero_Trii    | mmed, Industrial    |                     |
|          |                 |                    | Catchment and O    | ffsite Catchment    | "Flood Frequency in |
|          |                 |                    | discharge)         |                     | New Zealand"        |
|          | Non-Climate     | Climate            | Non-Climate        | Climate Change      |                     |
|          | Change Adjusted | Change<br>Adjusted | Change Adjusted    | Adjusted            |                     |
| 2-year   | 8.00            | 9.96               | 8.28               | 10.18               | -                   |
| 10-year  | 14.2            | 17.91              | 14.84              | 18.88               | -                   |
| 100-year | 26.26           | 34.02              | 27.9               | 35.94               | 30.54               |

A Flowmaster model was built to conduct normal depth hydraulic calculations of the various flows. The section derived from the 2008 WRC LIDAR grid. Based on the same data, a 0.1% slope was measured for Magawhero stream at the sections position. A manning's coefficient of 0.06 was used for flood plains with light brush and trees, according to both HEC-RAS and Flowmaster manuals. The results are presented in the **Appendix B** of this memo.

The calculations show minimum to negligible effects to the stream from the proposed diversion. For the 2year ARI design event, the proposed diversion results in 9mm of depth increase and just 0.004m/s velocity increase. For the 10-year ARI design event, the corresponding effects are 29mm of depth and 0.009m/s velocity. Finally, for the 100-year ARI design event the effects are 32mm of depth and 0.010m/s velocity. This means that Mangawhero Stream can accommodate the additional flows without having any adverse effect on its flow capacity and without the increase of scour or erosion risk, as the flow characteristics remain practically unchanged. The proposed diversion also provides protection from flooding to both the proposed development and SH24 that currently does not have stormwater infrastructure to manage this overland flow, apart from two soak pits.



Based on the results, the proposed stormwater management layout for the Calcutta Farms industrial development is not expected to cause any adverse effects to Mangawhero Stream as the increase to the 100-year ARI discharge in the climate change adjusted scenario is 0.14m<sup>3</sup>/s corresponds to 0.4% increase which is negligible. It is therefore proposed that bank stabilisation and scour and erosion control stream works for Mangawhero Stream are not required.

Yours sincerely Bloxam Burnett & Olliver

**Constantinos Fokianos** Water Resource Engineering Manager 0275101062 cfokianos@bbo.co.nz

C:\12ds\data\10.7.120.14\146930.02 - Industrial Development\_5122\07 Water Resource\Reports\Mangawhero Stream Memo Update - 23.06.2022.docx



## **APPENDIX A**

### 100-year ARI flow estimate based on McKerchar & Pearson "Flood Frequency in New Zealand" method

A=49.31km<sup>2</sup>

From figure 3.4 (see below)  $\rightarrow \bar{Q}/A^{0.8} = 0.5$ 

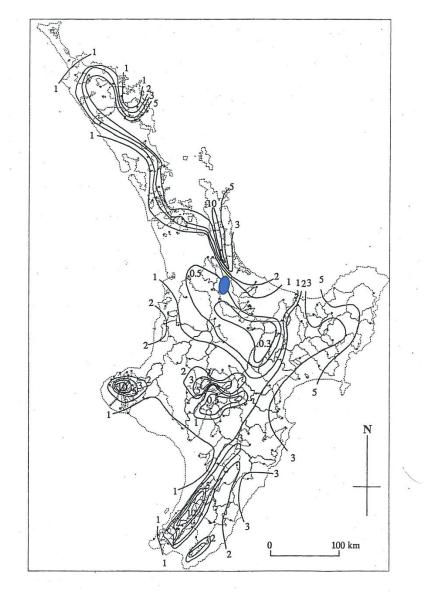



Fig. 3.4 North Island contour map of  $\overline{Q}/A^{0.8}$ . The contours have been fitted by eye to the data shown in Fig. 3.2.  $\overline{Q}$  is in m<sup>3</sup>/s, A is in km<sup>2</sup>.



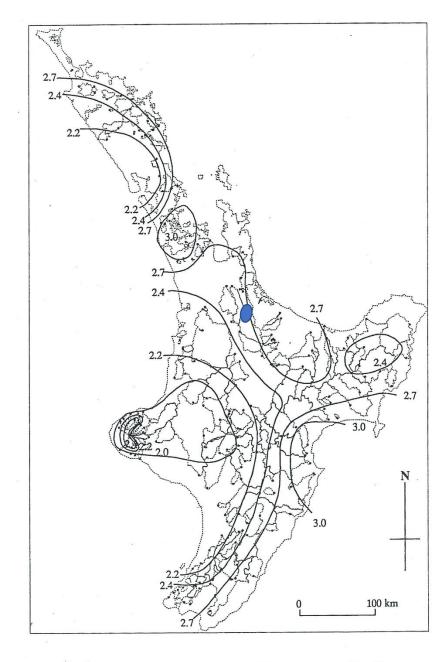



Fig. 4.8 North Island contour map of  $q_{100}$ . The contours are fitted by eye to the data shown in Fig 4.6

 $\bar{Q}_{map} = (\bar{Q}/A^{0.8}) \cdot (A)^{0.8} = 11.31 \text{ m}^3/\text{s}$ 

 $\bar{Q}_{100,map} = \bar{Q}_{map} \cdot q_{100}$  = <u>30.54 m<sup>3</sup>/s</u>



## **APPENDIX B**

Flowmaster hydraulic calculations report on Mangawhero Stream Section

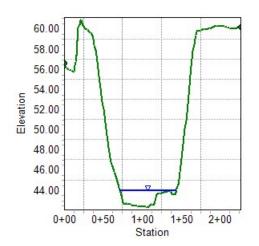


# Irregular Section (Mangawhero Stream Flow Checks.fm8) Report

| Label                                 | Notes | Channel Slope<br>(m/m) | Critical Depth<br>(m) | Critical Slope<br>(m/m) | Discharge<br>(m³/s) |
|---------------------------------------|-------|------------------------|-----------------------|-------------------------|---------------------|
| Existing Conditions -<br>100yr ARI CC |       | 0.00100                | 0.649                 | 0.04760                 | 34.02               |
| Proposed Conditions -<br>100yr ARI_CC |       | 0.00100                | 0.664                 | 0.04706                 | 35.94               |
| Existing Conditions - 2yr<br>ARI_CC   |       | 0.00100                | 0.405                 | 0.06086                 | 9.96                |
| Proposed Conditions -<br>2yr ARI_CC   |       | 0.00100                | 0.408                 | 0.06065                 | 10.18               |
| Existing Conditions -<br>10yr ARI_CC  |       | 0.00100                | 0.500                 | 0.05442                 | 17.91               |
| Proposed Conditions -<br>10yr ARI_CC  |       | 0.00100                | 0.510                 | 0.05383                 | 18.88               |

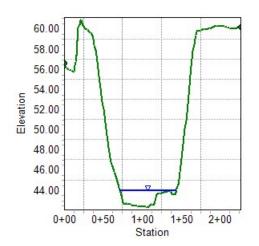
| Water Surface Elevation<br>(m) | Flow Area<br>(m²) | Flow Type   | Friction Factor | Friction Method | Froude Number |
|--------------------------------|-------------------|-------------|-----------------|-----------------|---------------|
| 43.94                          | 67.78             | Subcritical | 0.0000          | Manning Formula | 0.17          |
| 43.97                          | 70.14             | Subcritical | 0.0000          | Manning Formula | 0.17          |
| 43.14                          | 26.25             | Subcritical | 0.0000          | Manning Formula | 0.15          |
| 43.15                          | 26.61             | Subcritical | 0.0000          | Manning Formula | 0.16          |
| 43.41                          | 38.00             | Subcritical | 0.0000          | Manning Formula | 0.16          |
| 43.44                          | 39.30             | Subcritical | 0.0000          | Manning Formula | 0.16          |

| Hydraulic Radius<br>(m) | Maximum Elevation<br>(m) | Minimum Elevation<br>(m) | Normal Depth<br>(m) | Number Of Steps | Roughness Coefficient |
|-------------------------|--------------------------|--------------------------|---------------------|-----------------|-----------------------|
| 0.929                   | 60.94                    | 42.27                    | 1.669               | 0               | 0.060                 |
| 0.959                   | 60.94                    | 42.27                    | 1.701               | 0               | 0.060                 |
| 0.611                   | 60.94                    | 42.27                    | 0.870               | 0               | 0.060                 |
| 0.618                   | 60.94                    | 42.27                    | 0.879               | 0               | 0.060                 |
| 0.846                   | 60.94                    | 42.27                    | 1.139               | 0               | 0.060                 |
| 0.870                   | 60.94                    | 42.27                    | 1.168               | 0               | 0.060                 |


| Roughness Height<br>(m) | Solve For    | Specific Energy<br>(m) | Top Width<br>(m) | Velocity<br>(m/s) | Velocity Head<br>(m) |
|-------------------------|--------------|------------------------|------------------|-------------------|----------------------|
| 0.000                   | Normal Depth | 1.68                   | 72.56            | 0.502             | 0.01                 |
| 0.000                   | Normal Depth | 1.71                   | 72.77            | 0.512             | 0.01                 |
| 0.000                   | Normal Depth | 0.88                   | 42.82            | 0.379             | 0.01                 |
| 0.000                   | Normal Depth | 0.89                   | 42.88            | 0.383             | 0.01                 |
| 0.000                   | Normal Depth | 1.15                   | 44.73            | 0.471             | 0.01                 |
| 0.000                   | Normal Depth | 1.18                   | 44.94            | 0.480             | 0.01                 |

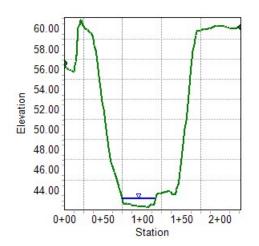
# Irregular Section (Mangawhero Stream Flow Checks.fm8) Report

| Wetted Perimeter<br>(m) | Profile Description |
|-------------------------|---------------------|
| 72.93                   |                     |
| 73.16                   |                     |
| 42.96                   |                     |
| 43.02                   |                     |
| 44.94                   |                     |
| 45.17                   |                     |


# Cross Section for Existing Conditions - 100yr ARI\_CC

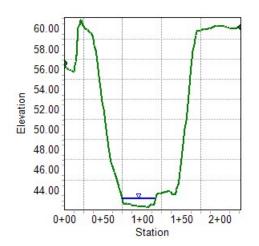
|                     | logg dection for Existing | Vollaitions          | - 100yi Aki_00  |
|---------------------|---------------------------|----------------------|-----------------|
| Project Description |                           |                      |                 |
| Friction Method     | Manning Formula           |                      |                 |
| Solve For           | Normal Depth              |                      |                 |
| Input Data          |                           |                      |                 |
| Channel Slope       |                           | 0.00100 m/           | /m              |
| Normal Depth        |                           | 1.669 m              |                 |
| Discharge           |                           | 34.02 m <sup>3</sup> | <sup>3</sup> /s |
|                     |                           |                      |                 |




# Cross Section for Proposed Conditions - 100yr ARI\_CC

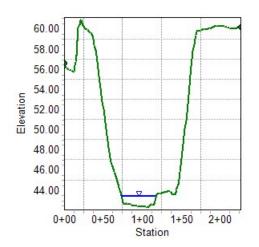
|                     |                 | Unition |      |
|---------------------|-----------------|---------|------|
| Project Description |                 |         |      |
| Friction Method     | Manning Formula |         |      |
| Solve For           | Normal Depth    |         |      |
| Input Data          |                 |         |      |
| Channel Slope       |                 | 0.00100 | m/m  |
| Normal Depth        |                 | 1.701   | m    |
| Discharge           |                 | 35.94   | m³/s |
|                     |                 |         |      |




# Cross Section for Existing Conditions - 2yr ARI\_CC

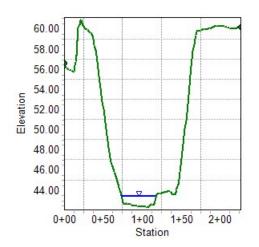
|                     | Cross Section for Existing Co | martic  | JIIS - ZYI ARI_CC |
|---------------------|-------------------------------|---------|-------------------|
| Project Description |                               |         |                   |
| Friction Method     | Manning Formula               |         |                   |
| Solve For           | Normal Depth                  |         |                   |
| Input Data          |                               |         |                   |
| Channel Slope       |                               | 0.00100 | m/m               |
| Normal Depth        |                               | 0.870   | m                 |
| Discharge           |                               | 9.96    | m³/s              |
|                     |                               |         |                   |




# Cross Section for Proposed Conditions - 2yr ARI\_CC

|                     | CIUSS Section for Proposed |         | 0113 - ZYI ARI_CC |
|---------------------|----------------------------|---------|-------------------|
| Project Description |                            |         |                   |
| Friction Method     | Manning Formula            |         |                   |
| Solve For           | Normal Depth               |         |                   |
| Input Data          |                            |         |                   |
| Channel Slope       |                            | 0.00100 | m/m               |
| Normal Depth        |                            | 0.879   | m                 |
| Discharge           |                            | 10.18   | m³/s              |
|                     |                            |         |                   |




# Cross Section for Existing Conditions - 10yr ARI\_CC

|                     | Cross Section for Existing Condition | 0113 - TUYI ARI_UU |
|---------------------|--------------------------------------|--------------------|
| Project Description |                                      |                    |
| Friction Method     | Manning Formula                      |                    |
| Solve For           | Normal Depth                         |                    |
| Input Data          |                                      |                    |
| Channel Slope       | 0.0010                               | 00 m/m             |
| Normal Depth        | 1.13                                 | 39 m               |
| Discharge           | 17.9                                 | 91 m³/s            |
|                     |                                      |                    |



# Cross Section for Proposed Conditions - 10yr ARI\_CC

|                     | closs section for Proposed | Conditio |      |
|---------------------|----------------------------|----------|------|
| Project Description |                            |          |      |
| Friction Method     | Manning Formula            |          |      |
| Solve For           | Normal Depth               |          |      |
| Input Data          |                            |          |      |
| Channel Slope       |                            | 0.00100  | m/m  |
| Normal Depth        |                            | 1.168    | m    |
| Discharge           |                            | 18.88    | m³/s |
|                     |                            |          |      |



Appendix L – Response to Peer Review Matters





Level 4, 18 London Street PO Box 9041, Hamilton 3240 New Zealand

> +64 7 838 0144 consultants@bbo.co.nz www.bbo.co.nz

# Memo

| То       | Amir Montakhab - CKL                      |
|----------|-------------------------------------------|
| From     | Constantinos Fokianos                     |
| Date     | 23 June 2022                              |
| Job No.  | 146930.02                                 |
| Job name | Calcutta Farms – Industrial Area          |
| Subject  | Regarding Peer Review Items 2, 3, 4, & 10 |

#### Items 2, 3, & 4

BBO contacted Waikato Regional Council (Brian Richmond and Megan Wood) regarding the hydrology matters and climate change factors that were used for this report. The response was that the proposed methodology appears to be acceptable. They also advised that the climate change factors will be changing soon and will be adjusted according to BECA's memo, and it is therefore recommended (not currently mandatory, though) to use the approach that is described on the document.

Based on WRC recommendations, we have updated the hydrological and hydraulic calculations to meet the upcoming requirements to future proof the proposed plan change. The design rainfall hyetographs were adjusted to 2.3°C temperature rise instead of the previously used 2.1°C. Also, a scenario of 3.8°C temperature rise was added to assess the elevated flood levels to the proposed wetlands and swales. As previously, the temperature change factors provided in HRDSv4 technical document were applied to the historical rainfall information to provide the future projection of the design rainfall depths and intensities.

Additional hydrological calculations were conducted to provide comparison of the proposed methodology using EPA SWMM in relation to WRC guidelines Worksheets 1 & 2 (graphical method), and calculations with the use of HEC-HMS and SCS Curve number and SCS Unit hydrograph, according to WRC TR20-06 and ARC TP108. Refer to Appendices A & B.

Table 1 below summarises the hydrological calculations and modelling that took place to provide an assessment of the three methods and how well they correlate. Catchment SWC01B was used for reference.



|                                                                         |       | Climate Change Scenario |      |       |                 |                 |          |       |                 |                 |      |       |                 |                 |       |       |        |                 |        |       |                 |                 |       |       |
|-------------------------------------------------------------------------|-------|-------------------------|------|-------|-----------------|-----------------|----------|-------|-----------------|-----------------|------|-------|-----------------|-----------------|-------|-------|--------|-----------------|--------|-------|-----------------|-----------------|-------|-------|
|                                                                         |       |                         |      |       | E               | disting Co      | ondition | s     |                 |                 |      |       |                 |                 |       |       |        | 2.1°C In        | crease |       |                 |                 |       |       |
| Methodology & Software Used                                             |       | 2yr/2                   | 24h  |       |                 | 10yr/           | 24h      |       |                 | 100yr           | /24h |       |                 | 2yr/            | 24h   |       |        | 10yr/           | '24h   |       |                 | 100yr           | /24h  |       |
|                                                                         | P24   | Q <sub>24</sub>         | v    | q     | P <sub>24</sub> | Q <sub>24</sub> | v        | q     | P <sub>24</sub> | Q <sub>24</sub> | v    | q     | P <sub>24</sub> | Q <sub>24</sub> | v     | þ     | P24    | Q <sub>24</sub> | v      | þ     | P <sub>24</sub> | Q <sub>24</sub> | v     | q     |
|                                                                         | mm    | mm                      | m³   | m³/s  | mm              | mm              | m³       | m³/s  | mm              | mm              | m³   | m³/s  | mm              | mm              | m³    | m³/s  | mm     | mm              | m³     | m³/s  | mm              | mm              | m³    | m³/s  |
| WRC Worksheets 1 & 2                                                    | 79.3  | 10.3                    | 1580 | 0.146 | 122             | 26.1            | 4004     | 0.393 | 191             | 61.3            | 9405 | 0.967 | 91.2            | 78.2            | 11997 | 1.231 | 142.8  | 129.2           | 19822  | 2.016 | 225.6           | 211.5           | 32448 | 3.288 |
| HEC-HMS:                                                                | 80.06 | 10.53                   | 1610 | 0.125 | 123.27          | 26.56           | 4075     | 0.333 | 193.17          | 62.43           | 9579 | 0.808 | 92.25           | 86.55           | 13278 | 1.01  | 144.41 | 137.09          | 21032  | 1.603 | 228.09          | 219.11          | 33615 | 2.568 |
| WRC Temporal Pattern Rainfall, SCS CN<br>Numbers, & SCS Unit Hydrograph |       |                         |      |       |                 |                 |          |       |                 |                 |      |       |                 |                 |       |       |        |                 |        |       |                 |                 |       |       |
| EPA SWMM:                                                               | 80.08 | 3.32                    | 510  | 0.064 | 123.26          | 15.83           | 2430     | 0.128 | 193.14          | 55.88           | 8570 | 0.542 | 92.21           | 82.45           | 12650 | 1.117 | 144.38 | 131.73          | 20210  | 2.05  | 228.09          | 212.8           | 32650 | 3.74  |
| WRC Temporal Pattern Rainfall,                                          |       |                         |      |       |                 |                 |          |       |                 |                 |      |       |                 |                 |       |       |        |                 |        |       |                 |                 |       |       |
| Imperviousness + Horton's Infiltration                                  |       |                         |      |       |                 |                 |          |       |                 |                 |      |       |                 |                 |       |       |        |                 |        |       |                 |                 |       |       |

#### Table 1.Hydrological calculations table

|                                                                          |       | Climate Change Scenario |       |       |        |                 |          |       |        |                 |       |       |        |                 |       |       |        |                 |       |       |        |                 |       |       |
|--------------------------------------------------------------------------|-------|-------------------------|-------|-------|--------|-----------------|----------|-------|--------|-----------------|-------|-------|--------|-----------------|-------|-------|--------|-----------------|-------|-------|--------|-----------------|-------|-------|
|                                                                          |       | 2.3°C Increa            |       |       |        |                 | Increase |       |        |                 |       |       |        | 3.8°C Increase  |       |       |        |                 |       |       |        |                 |       |       |
| Methodology & Software Used                                              |       | 2yr/                    | 24h   |       |        | 10yr/           | /24h     |       |        | 100yr           | /24h  |       |        | 2yr/            | 24h   |       |        | 10yr/           | /24h  |       |        | 100yr           | /24h  |       |
|                                                                          | P24   | Q <sub>24</sub>         | v     | q     | P24    | Q <sub>24</sub> | v        | q     | P24    | Q <sub>24</sub> | v     | q     | P24    | Q <sub>24</sub> | v     | þ     | P24    | Q <sub>24</sub> | v     | q     | P24    | Q <sub>24</sub> | v     | q     |
|                                                                          | mm    | mm                      | m³    | m³/s  | mm     | mm              | m³       | m³/s  | mm     | mm              | m³    | m³/s  | mm     | mm              | m³    | m³/s  | mm     | mm              | m³    | m³/s  | mm     | mm              | m³    | m³/s  |
| WRC Worksheets 1 & 2                                                     | 92.4  | 79.4                    | 12482 | 1.247 | 144.72 | 131.1           | 20113    | 2.043 | 228.72 | 214.7           | 32939 | 3.334 | 101    | 87.9            | 13486 | 1.395 | 159.6  | 145.9           | 22384 | 2.277 | 253.4  | 239.3           | 36713 | 3.693 |
| HEC-HMS:                                                                 | 93.41 | 87.67                   | 13450 | 1.02  | 146.33 | 138.96          | 21319    | 1.626 | 231.19 | 222.16          | 34084 | 2.606 | 102.16 | 96.11           | 14745 | 1.122 | 161.32 | 153.6           | 23565 | 1.799 | 256.2  | 246.8           | 37864 | 2.895 |
| WRC Temporal Pattern Rainfall, SCS CN                                    |       |                         |       |       |        |                 |          |       |        |                 |       |       |        |                 |       |       |        |                 |       |       |        |                 |       |       |
| Numbers, & SCS Unit Hydrograph                                           |       |                         |       |       |        |                 |          |       |        |                 |       |       |        |                 |       |       |        |                 |       |       |        |                 |       |       |
| EPA SWMM:                                                                | 93.41 | 83.57                   | 12820 | 1.138 | 146.31 | 133.58          | 20490    | 2.087 | 231.24 | 215.88          | 33120 | 3.805 | 102.15 | 91.76           | 14080 | 1.284 | 161.36 | 148             | 22710 | 2.381 | 256.23 | 240.44          | 36890 | 4.331 |
| WRC Temporal Pattern Rainfall,<br>Imperviousness + Horton's Infiltration |       |                         |       |       |        |                 |          |       |        |                 |       |       |        |                 |       |       |        |                 |       |       |        |                 |       |       |

Notes:

- The HEC-HMS model used lag time and SCS CN curve numbers as calculated in WRC Worksheets 1 & 2. The temporal pattern for rainfall was used as provided in WRC Stormwater Runoff Modelling Guideline (TR20-06), and the SCS Unit Hydrograph was used as the transform method.
- The EPA SWMM model is based on the methodology used for the hydrological calculations is briefly described in section 1.3.1 Drainage and Hydrology. It follows WRC guidelines regarding the Temporal Pattern for the design rainfalls. Imperviousness and initial and saturated hydraulic conductivity are used instead of Curve numbers CN. Pervious and impervious depression storage depths (mm) are defined instead of initial abstraction.
- WRC Worksheets attached at the end of the document.

The results show that there is reasonable correlation between the different models/methodologies for the post-development conditions, with the proposed EPA-SWMM model to provide a more conservative, higher peak runoff. On the existing conditions scenarios, WRC graphical method and HEC-HMS have good correlation, with EPA-SWMM providing a significantly lower estimate of the current peak flow. This is due to the different approach that the EPA SWMM and SCS method have regarding the runoff calculation on pervious surfaces (Horton's infiltration for SWMM and Curve Numbers for SCS). The imperviousness percentage was then revised from 2% to 5% to include all the gravel tracks. The undated flows from EPA SWMM correlated better with the HEC-HMS and WRC worksheets, but still remained lower. We believe that the proposed EPA SWMM model provides a better approach as it is based on the on-site investigations, infiltration test results on the higher levels of the ground, and measurement of impervious areas where the CN numbers have been defined based on rural catchments in the Midwest in United States, a few decades ago. Also, using the EPA SWMM results constitutes a more conservative approach as these lower flows have been determined as the attenuation target for the proposed wetlands outlet structures, providing more attenuation volume to the proposed system. Table 1 was then updated to include revised existing conditions flows.

|            | Ev                                                                  |                                                                                                                                                   |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                            |                                                       |                                                       |                                                        |                                                       |                                                        |                                                       |                                                        |                                                        |                                                        |                                                        |                                                        |                                                         |                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
|------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
|            | L/                                                                  | isting Cor                                                                                                                                        | nditions                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                          |                                                       |                                                       |                                                        |                                                       |                                                        |                                                       |                                                        |                                                        |                                                        | 2.1°C In                                               | crease                                                 |                                                         |                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
| 24h        |                                                                     | 10yr/2                                                                                                                                            | 24h                                                                                                                                                                                                 |                                                                                                                                                                                                                                                            |                                                       | 100yr/                                                | 24h                                                    |                                                       |                                                        | 2yr/2                                                 | 24h                                                    |                                                        |                                                        | 10yr/                                                  | 24h                                                    |                                                         |                                                        | 100yr                                                   | /24h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        |
| V q        | P24                                                                 | Q <sub>24</sub>                                                                                                                                   | ٧                                                                                                                                                                                                   | þ                                                                                                                                                                                                                                                          | P <sub>24</sub>                                       | Q <sub>24</sub>                                       | v                                                      | q                                                     | P24                                                    | Q <sub>24</sub>                                       | v                                                      | q                                                      | P24                                                    | Q <sub>24</sub>                                        | v                                                      | q                                                       | P24                                                    | Q <sub>24</sub>                                         | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | q                                                      |
| m³ m³/s    | mm                                                                  | mm                                                                                                                                                | m³                                                                                                                                                                                                  | m³/s                                                                                                                                                                                                                                                       | mm                                                    | mm                                                    | m³                                                     | m³/s                                                  | mm                                                     | mm                                                    | m³                                                     | m³/s                                                   | mm                                                     | mm                                                     | m³                                                     | m³/s                                                    | mm                                                     | mm                                                      | m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m³/s                                                   |
| 1580 0.146 | 122                                                                 | 26.1                                                                                                                                              | 4004                                                                                                                                                                                                | 0.393                                                                                                                                                                                                                                                      | 191                                                   | 61.3                                                  | 9405                                                   | 0.967                                                 | 91.2                                                   | 78.2                                                  | 11997                                                  | 1.231                                                  | 142.8                                                  | 129.2                                                  | 19822                                                  | 2.016                                                   | 225.6                                                  | 211.5                                                   | 32448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.288                                                  |
| 1610 0.125 | 123.27                                                              | 26.56                                                                                                                                             | 4075                                                                                                                                                                                                | 0.333                                                                                                                                                                                                                                                      | 193.17                                                | 62.43                                                 | 9579                                                   | 0.808                                                 | 92.25                                                  | 86.55                                                 | 13278                                                  | 1.01                                                   | 144.41                                                 | 137.09                                                 | 21032                                                  | 1.603                                                   | 228.09                                                 | 219.11                                                  | 33615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.568                                                  |
|            |                                                                     |                                                                                                                                                   |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                            |                                                       |                                                       |                                                        |                                                       |                                                        |                                                       |                                                        |                                                        |                                                        |                                                        |                                                        |                                                         |                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
|            |                                                                     |                                                                                                                                                   |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                            |                                                       |                                                       |                                                        |                                                       |                                                        |                                                       |                                                        |                                                        |                                                        |                                                        |                                                        |                                                         |                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
| 870 0.126  | 123.26                                                              | 19.24                                                                                                                                             | 2950                                                                                                                                                                                                | 0.263                                                                                                                                                                                                                                                      | 193.14                                                | 60.33                                                 | 9260                                                   | 0.669                                                 | 92.21                                                  | 82.45                                                 | 12650                                                  | 1.117                                                  | 144.38                                                 | 131.73                                                 | 20210                                                  | 2.05                                                    | 228.09                                                 | 212.8                                                   | 32650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.74                                                   |
|            |                                                                     |                                                                                                                                                   |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                            |                                                       |                                                       |                                                        |                                                       |                                                        |                                                       |                                                        |                                                        |                                                        |                                                        |                                                        |                                                         |                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
|            |                                                                     |                                                                                                                                                   |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                            |                                                       |                                                       |                                                        |                                                       |                                                        |                                                       |                                                        |                                                        |                                                        |                                                        |                                                        |                                                         |                                                        |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        |
|            | V q<br>m <sup>3</sup> m <sup>3</sup> /s<br>1580 0.146<br>1610 0.125 | V         q         P24           m³         m³/s         mm           1580         0.146         122           1610         0.125         123.27 | V         q         P24         O24           m³         m³/s         mm         mm           1580         0.146         122         26.1           1610         0.125         123.27         26.56 | V         q         P <sub>24</sub> O <sub>24</sub> V           m³         m³/s         mm         mm         m³           1580         0.146         122         26.1         4004           1610         0.125         123.27         26.56         4075 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | V         q         P <sub>24</sub> Q <sub>34</sub> V         q         P <sub>34</sub> Q <sub>34</sub> V | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

| Table 2. | Hydrological calculations table (updated as per Existing Conditions) |
|----------|----------------------------------------------------------------------|
|----------|----------------------------------------------------------------------|

|                                        |                 | Climate Change Scenario |                |       |        |                 |                |       |        |                 |                |       |                 |                 |                |       |                |                 |                |       |        |                 |                |       |
|----------------------------------------|-----------------|-------------------------|----------------|-------|--------|-----------------|----------------|-------|--------|-----------------|----------------|-------|-----------------|-----------------|----------------|-------|----------------|-----------------|----------------|-------|--------|-----------------|----------------|-------|
|                                        |                 |                         |                |       |        | 2.3°C In        | crease         |       |        |                 |                |       |                 |                 |                |       | 3.8°C Increase |                 |                |       |        |                 |                |       |
| Methodology & Software Used            |                 | 2yr/2                   | 24h            |       |        | 10yr/           | 24h            |       |        | 100yr           | /24h           |       |                 | 2yr/2           | 24h            |       |                | 10yr/           | '24h           |       |        | 100yr           | /24h           |       |
|                                        | P <sub>24</sub> | Q <sub>24</sub>         | v              | q     | P24    | Q <sub>24</sub> | v              | q     | P24    | Q <sub>24</sub> | v              | a     | P <sub>24</sub> | Q <sub>24</sub> | v              | q     | P24            | Q <sub>24</sub> | v              | q     | P24    | Q <sub>24</sub> | v              | q     |
|                                        | mm              | mm                      | m <sup>3</sup> | m³/s  | mm     | mm              | m <sup>3</sup> | m³/s  | mm     | mm              | m <sup>3</sup> | m³/s  | mm              | mm              | m <sup>3</sup> | m³/s  | mm             | mm              | m <sup>3</sup> | m³/s  | mm     | mm              | m <sup>3</sup> | m³/s  |
| WRC Worksheets 1 & 2                   | 92.4            | 79.4                    | 12482          | 1.247 | 144.72 | 131.1           | 20113          | 2.043 | 228.72 | 214.7           | 32939          | 3.334 | 101             | 87.9            | 13486          | 1.395 | 159.6          | 145.9           | 22384          | 2.277 | 253.4  | 239.3           | 36713          | 3.693 |
| HEC-HMS:                               | 93.41           | 87.67                   | 13450          | 1.02  | 146.33 | 138.96          | 21319          | 1.626 | 231.19 | 222.16          | 34084          | 2.606 | 102.16          | 96.11           | 14745          | 1.122 | 161.32         | 153.6           | 23565          | 1.799 | 256.2  | 246.8           | 37864          | 2.895 |
| WRC Temporal Pattern Rainfall, SCS CN  |                 |                         |                |       |        |                 |                |       |        |                 |                |       |                 |                 |                |       |                |                 |                |       |        |                 |                |       |
| Numbers, & SCS Unit Hydrograph         |                 |                         |                |       |        |                 |                |       |        |                 |                |       |                 |                 |                |       |                |                 |                |       |        |                 |                |       |
| EPA SWMM:                              | 93.41           | 83.57                   | 12820          | 1.138 | 146.31 | 133.58          | 20490          | 2.087 | 231.24 | 215.88          | 33120          | 3.805 | 102.15          | 91.76           | 14080          | 1.284 | 161.36         | 148             | 22710          | 2.381 | 256.23 | 240.44          | 36890          | 4.331 |
| WRC Temporal Pattern Rainfall,         |                 |                         |                |       |        |                 |                |       |        |                 |                |       |                 |                 |                |       |                |                 |                |       |        |                 |                |       |
| Imperviousness + Horton's Infiltration |                 |                         |                |       |        |                 |                |       |        |                 |                |       |                 |                 |                |       |                |                 |                |       |        |                 |                |       |



The figures group below (Figure 1) presents the results for the various scenarios that were modelled for one catchment (SWC01B). The result show that on the post-development scenarios, EPA SWMM provides more conservative, higher peak runoff then the graphical method and HEC-HMS. EPA SWMM and the graphical method correlate better, while HEC-HMS provides smaller peak flows.

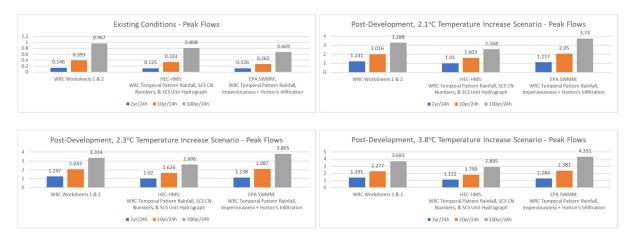



Figure 1. Catchment SWC01B peak flows calculated with different methods and under various climate change scenarios

Figures 2 and 3 below present the precipitation/runoff hydrographs of catchment SWC01B for both pre- and post-development conditions and the 100year ARI scenario.

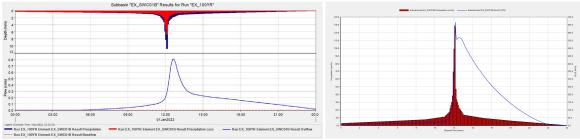



Figure 2. Catchment SWC01B precipitation/runoff hydrograph. Existing conditions, 100year ARI storm.

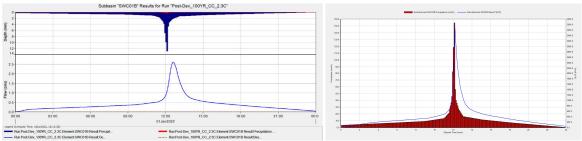



Figure 3. Catchment SWC01B precipitation/runoff hydrograph. Post-development conditions, 100year ARI storm with climate change (2.3°C increase).

The information above shows that the proposed methodology is in line with the methodology that WRC proposes, and that is why it has been accepted on all occasions in the past by the regional council. The proposed methodology provides a conservative approach that is consistent with the current maturity of the project (plan change).



#### Item 10

#### Overland flow path on the southwest boundary of the development.

The existing overland flow path that crosses the site will be intercepted by the proposed swale/stream that conveys the treated/attenuated flows from the wetlands to the unnamed Mangawhero Stream tributary/gully. Figure 11 and drawing 701 have been amended and updated to include the proposed diversion. The upstream catchment that is diverted into the proposed swale/stream has an area of approximately 110ha. It is cultivated land that belongs to Calcutta Farms. As mentioned in the stormwater section of the infrastructure report, an overall stormwater masterplan is being developed for the full Calcutta Farms property, that includes the treatment, attenuation, and conveyance of the future residential and commercial development.

For the needs of the proposed plan change, the design was updated to include the management of the runoff from the offsite catchment upstream of the industrial area, as shown on figure 10 of the report. The proposed stream has been extended to intercept the overland flow path and divert it into the unnamed Mangawhero Stream tributary/gully.

The assessment of the effects of this diversion has been included in an updated version of the memo that was originally released on 3 of May 2022 and is attached to this memo (referred as "Mangawhero Stream Memo" from now on).

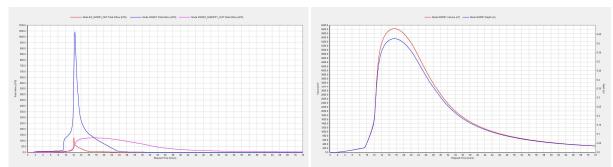
The diversion of the upstream catchment to discharge into Mangawhero Stream approximately 500m upstream of its current point of discharge increases the flow downstream of the confluence of the unnamed tributary and Mangawhero stream. There is an approximately 2.2% increase to the 2-year ARI, climate adjusted flow (from 9.96m<sup>3</sup>/s to 10.18m<sup>3</sup>/s), a 5.4% increase to the 10-year ARI, climate adjusted flow (from 17.91m<sup>3</sup>/s to 18.88m<sup>3</sup>/s), and a 5.6% increase to the 100-year ARI, climate adjusted flow (from 34.02m<sup>3</sup>/s to 35.94m<sup>3</sup>/s). A section right downstream of the confluence was used to assess the effects of the increased flows to Mangawhero Stream. Refer to Figure 4 below.



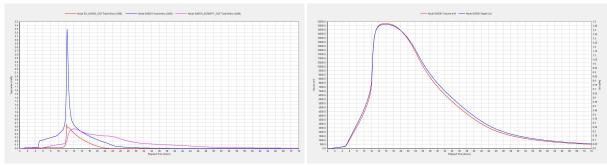
Figure 4. Section of Mangawhero stream used to assess the effects of the proposed off-site catchment diversion.



A Flowmaster model was built to conduct normal depth hydraulic calculations of the various flows. The section derived from the 2008 WRC LIDAR grid. Based on the same data, a 0.1% slope was measured for Magawhero stream at the sections position. A manning's coefficient of 0.06 was used for flood plains with light brush and trees, according to both HEC-RAS and Flowmaster manuals. The results are presented in the Mangawhero Stream memo.


The calculations show minimum to negligible effects to the stream from the proposed diversion. For the 2year ARI design event, the proposed diversion results in 9mm of depth increase and just 0.004m/s velocity increase. For the 10-year ARI design event, the corresponding effects are 29mm of depth and 0.009m/s velocity. Finally, for the 100-year ARI design event the effects are 32mm of depth and 0.010m/s velocity. This means that Mangawhero Stream can accommodate the additional flows without having any adverse effect on its flow capacity and without the increase of scour or erosion risk, as the flow characteristics remain practically unchanged. The proposed diversion also provides protection from flooding to both the proposed development and SH24 that currently does not have stormwater infrastructure to manage this overland flow, apart from two soak pits.

#### Figures 14 and 15, wetlands hydrographs.


The diagrams have been updated to correspond to updated model (2.3°C increase instead of 3.8, and catchment updates), as well as the increased existing conditions discharge flows that the outlet structures need to meet.

- (1). The attenuation flows indeed have duration more than 24hours and that is how attenuation works. It is impossible to attenuate and release a 24hour post-development rainfall within 24 hours and meet pre-development flows. A simple example is the following: Sub-catchment SWC01B 2-year ARI post-development total runoff volume is 12,820m<sup>3</sup>. To release this volume within 24hours, it would need an average discharge flow of 12,820m<sup>3</sup>/ 24hours/ 60minutes/ 60seconds = 0.149m<sup>3</sup>/s, which is higher than the pre-development 2-year ARI peak flow (0.126m<sup>3</sup>/s). There is no reference in RITS about the attenuated flows having to drain within 24hours. WRC TR20-07 in section 7.2.1 refers to a 48-hour period within which the retained volume (i.e. volume that being captured for infiltration) needs to be drained/infiltrated. The same section provides information about the average days between rain events. For the Hauraki Plains area, the minimum average time is 3 days. The proposed wetlands release most of the post-development volume within the 3 days period (72 hours). There is residual flow draining after the 72 hours but is very small and the wetlands have the available storage volumes for the next storm.
- (2). Figure 5 below shows the 2year ARI hydrographs for SWD01. Red line represents existing conditions hydrograph, the blue line shows the post-development inflow into the wetland, and the fuchsia line represents the attenuated flow being discharged from the wetland. Figure 6 below shows the storage volume/depth graph for SWD01 during the same 2-year design storm. At the end of the 72-hours period, there is 300m<sup>3</sup> of volume occupied, which is less than 2% of the total available volume of SWD01 (approximately 15,255m<sup>3</sup> for the 100-year ARI), which means that there is capacity to receive, store, and attenuate the next storm. The same applies for the 100-year ARI design storm, where at the end of the 72-hours period there is approximately 500m<sup>3</sup> of volume occupied, that correspond to 3.3% of the available volume (refer to Figures 7 & 8). In the 100-year ARI case, there is additional 800mm of freeboard up to the emergency overflow level which provides additional volume.





Figures 5 & 6. Wetland SWD01 2-year ARI hydrograph and depth/volume graph.



Figures 7 & 8. Wetland SWD01 100-year ARI hydrograph and depth/volume graph.

We believe that with the information provided int this memorandum, along with the updated Mangawhero Stream memorandum and the updated stormwater section of the infrastructure report, we have provided enough information to establish that the proposed high-level design and modelling conforms to the local, regional, and national guidelines and requirements/ specifications.

Yours sincerely Bloxam Burnett & Olliver

Constantinos Fokianos Water Resource Engineer Manager 0275101062 cfokianos@bbo.co.nz

C:\12ds\data\10.7.120.14\146930.02 - Industrial Development\_5122\07 Water Resource\Reports\Memo regarding Items 2,3,4 & 10 - 23.06.2022.docx



## **APPENDIX A**

Hydrological calculations using Worksheets 1 & 2, APPENDIX B of WRC TR20/06: Waikato stormwater runoff modelling guideline. Applied for catchment SWC01B.



## Worksheet 1: Runoff Parameters and Time of Concentration



Project: Calcutta Farms IndustrialBy: WRLocation: MatamataChecked: CF

Date: 08.06.2022

Scenario: Pre-Developed SWC01B (Pre-developed or post-developed)

### 1. Runoff Curve Number (CN) and Initial Abstraction (Ia)

| Soil name and<br>classification | Cover description (cover<br>type, treatment and<br>hydrologic condition) | Curve Number (CN) | Area<br>(m²) | Area<br>(km²) | Product of<br>CN x Area |
|---------------------------------|--------------------------------------------------------------------------|-------------------|--------------|---------------|-------------------------|
| Sand and Silt                   | range, Soil Group A,                                                     |                   |              |               |                         |
|                                 | between fair and good                                                    | 44                | 153420       | 0.15342       | 6.75                    |
|                                 |                                                                          |                   |              | 0.00000       | 0                       |
|                                 |                                                                          | TOTALS            | 153420       | 0.15342       | 6.75                    |
| CN (weighted) =                 | <u>Total Product of CNxArea</u><br>Total Area                            | 44                |              |               |                         |

**Initial Abstraction** 

| $S = \left(\frac{1000}{CN} - 10\right) 25.4$ | ( <i>mm</i> ) = | 323.3mm |
|----------------------------------------------|-----------------|---------|
|----------------------------------------------|-----------------|---------|

 $I_{\alpha} = 0.05 \text{ S} = 16.2 \text{ mm}$ 

### 2. Time of Concentration (T<sub>c</sub>)

| (a) Sheet and shallow concentrated flow |
|-----------------------------------------|
| From Equation 7-2 or from Figure 7-1:   |

| Length L =  | 670m  |
|-------------|-------|
| Slope S =   | 0.5%  |
| mannings n= | 0.045 |

| $T_t = \frac{100nL^{0.33}}{S^{0.2}}$ | = | 44.3min |
|--------------------------------------|---|---------|
|--------------------------------------|---|---------|

=

=

0.00hr

0.00hr

0.00hr

(b) Concentrated network flow

- i. Road channel flow from Figure 7-2:
- ii. Pipe network flow from Table 7-2 and Figure 7-3:

iii. Open channel flow from Equation 7-3:

$$V = \frac{R^{2/3}S^{1/2}}{n} =$$

0.74hr

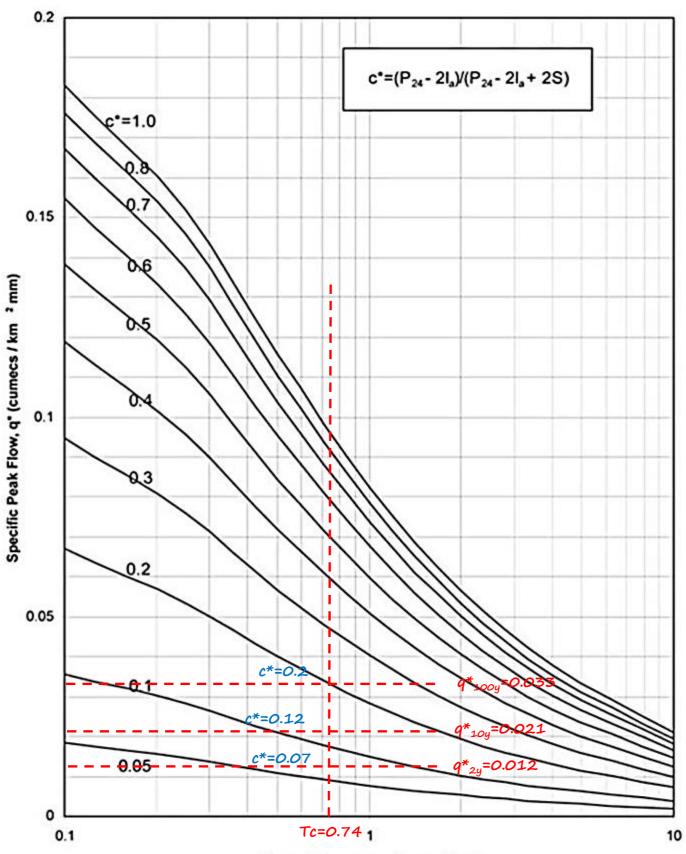
- (c) Time of concentration  $T_c = T_{t1} + T_{t2} + \dots + T_{tm} =$
- SCS Lag for HEC-HMS:  $t_p = \frac{2}{3}t_c = 0.49hr$

## Worksheet 2: Graphical Peak Flow Rate



| Project:  | Calcutta Farms Industrial | By: WR                           | Date: | 08.06.2022 |
|-----------|---------------------------|----------------------------------|-------|------------|
| Location: | Matamata                  | Checked: CF                      | Date: | 08.06.2022 |
| Scenario: | Pre-Developed SWC01B      | (Pre-developed or post-developed | d)    |            |

### 1. Data


| Catchment area (A)=         | 0.15342 | km <sup>2</sup>          |
|-----------------------------|---------|--------------------------|
| Runoff curve number (CN)=   | 44      | (from Worksheet 1)       |
| Initial abstraction (Ia)=   | 16.2    | (from Worksheet 1)       |
| Time of concentration (Tc)= | 0.74    | hours (from Worksheet 1) |

### 2. Storage

Storage (S) =

### 323.3 mm (from Worksheet 1)

|                                                                             | Storm #1 | Storm #2 | Storm #3 |
|-----------------------------------------------------------------------------|----------|----------|----------|
| Average Recurrence Interval (ARI)                                           | 2        | 10       | 100      |
| 24-hour rainfall depth P <sub>24</sub> (mm)                                 | 79.3     | 122      | 191      |
| Compute c*:<br>$c^* = \frac{P_{24} - 2I_a}{P_{24} - 2I_a + 2S}$             | 0.07     | 0.12     | 0.2      |
| Specific peak flow rate q* (from Figure 8-1)                                | 0.012    | 0.021    | 0.033    |
| Peak flow rate<br>$q_p = q^* A P_{24}$ (m <sup>3</sup> /s)                  | 0.146    | 0.393    | 0.967    |
| Runoff depth (mm)<br>$Q_{24} = \frac{(P_{24} - I_a)^2}{(P_{24} - I_a) + S}$ | 10.3     | 26.1     | 61.3     |
| Runoff volume<br>$V_{24} = 1000xQ_{24}A \text{ (m}^3)$                      | 1580     | 4004     | 9405     |



Time of Concentration, t<sub>c</sub> (hrs)

## Worksheet 1: Runoff Parameters and Time of Concentration

Date: 08.06.2022

Project: Calcutta Farms Industrial By: WR Checked: CF Location: Matamata Date: 08.06.2022 (Pre-developed or post-developed) Scenario: Post-Developed SWC01B

1. Runoff Curve Number (CN) and Initial Abstraction (Ia)

| Soil name and<br>classification | Cover description (cover<br>type, treatment and<br>hydrologic condition) | Curve Number (CN) | Area<br>(m²) | Area<br>(km²) | Product of<br>CN x Area |  |
|---------------------------------|--------------------------------------------------------------------------|-------------------|--------------|---------------|-------------------------|--|
| Sand and Silt                   | Impervious                                                               | 98                | 138078       | 0.13808       | 13.532                  |  |
| Sand and Silt                   | Open Space, Soil Group B,                                                |                   |              |               |                         |  |
|                                 | between fair and good                                                    | 65                | 15342        | 0.01534       | 0.997                   |  |
|                                 |                                                                          | TOTALS            | 153420       | 0.15342       | 14.529                  |  |
| CN (weighted) =                 | <u>Total Product of CNxArea</u><br>Total Area                            | 94.7              |              |               |                         |  |

**Initial Abstraction** 

 $S = \left(\frac{1000}{CN} - 10\right) 25.4 \ (mm) =$ 14.2mm

 $I_{\alpha} =$  $0.05 \cdot S =$ 0.7mm

#### 2. Time of Concentration (T<sub>c</sub>)

(a) Sheet and shallow concentrated flow From Equation 7-2 or from Figure 7-1:

| Length L =  | 220m  |
|-------------|-------|
| Slope S =   | 0.5%  |
| mannings n= | 0.045 |

$$T_t = \frac{100nL^{0.33}}{S^{0.2}} = 30.6 \text{ min}$$

(b) Concentrated network flow

- i. Road channel flow from Figure 7-2:
- 0.00hr ii. Pipe network flow from Table 7-2 and Figure 7-3: Flat gradient (v=0.6m/s) and 220m of length 0.10hr = iii. Open channel flow from Equation 7-3:  $V = \frac{R^{2/3}S^{1/2}}{n}$  R=0.273, n=0.045, s=0.002, L=230m, v=0.42m/s = 0.15hr

=

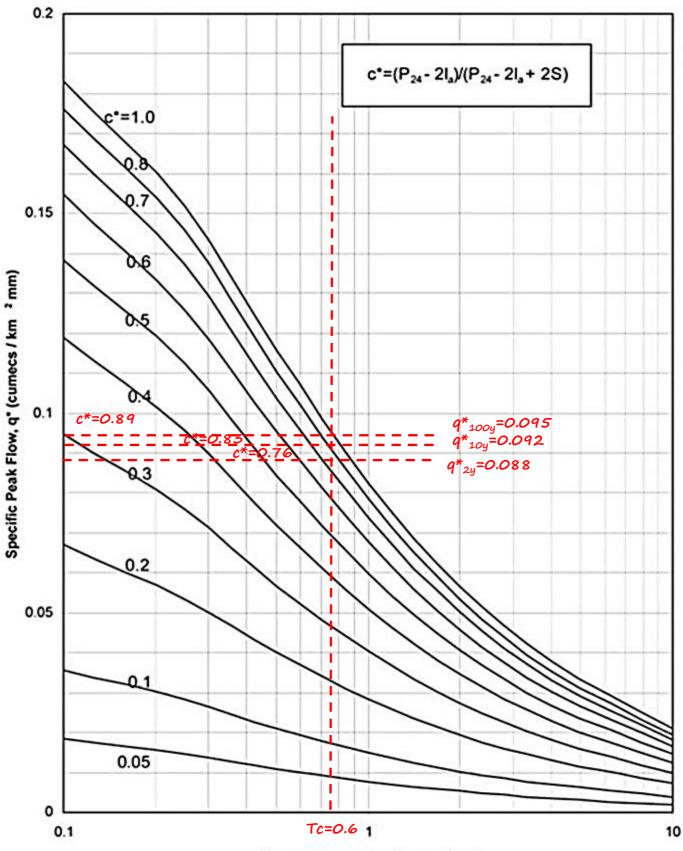
(c) Time of concentration  $T_c = T_{t1} + T_{t2} + \dots T_{tm} =$ 0.76hr SCS Lag for HEC-HMS:  $t_p = \frac{2}{3}t_c =$ 0.51hr

## Worksheet 2: Graphical Peak Flow Rate



| Project:  | Calcutta Farms Industrial | By: WR                           | Date: 08.06.2022 |
|-----------|---------------------------|----------------------------------|------------------|
| Location: | Matamata                  | Checked: CF                      | Date: 08.06.2022 |
| Scenario: | Post-Developed SWC01B     | (Pre-developed or post-developed | ł)               |

1. Data


| Catchment area (A)=         | 0.15342 | km <sup>2</sup>          |
|-----------------------------|---------|--------------------------|
| Runoff curve number (CN)=   | 94.7    | (from Worksheet 1)       |
| Initial abstraction (Ia)=   | 0.7     | (from Worksheet 1)       |
| Time of concentration (Tc)= | 0.76    | hours (from Worksheet 1) |

### 2. Storage

Storage (S) =

### 14.2 mm (from Worksheet 1)

|                                                                        | Storm #1 | Storm #2 | Storm #3 |
|------------------------------------------------------------------------|----------|----------|----------|
| Average Recurrence Interval (ARI)                                      | 2        | 10       | 100      |
| 24-hour rainfall depth P <sub>24</sub> (mm)                            | 91.2     | 142.8    | 225.6    |
| Compute c*:<br>$c^* = \frac{P_{24} - 2I_a}{P_{24} - 2I_a + 2S}$        | 0.76     | 0.83     | 0.89     |
| Specific peak flow rate q* (from Figure 8-1)                           | 0.088    | 0.092    | 0.095    |
| Peak flow rate<br>$q_p = q^* A P_{24}$ (m <sup>3</sup> /s)             | 1.231    | 2.016    | 3.288    |
| Runoff depth<br>$Q_{24} = \frac{(P_{24} - I_a)^2}{(P_{24} - I_a) + S}$ | 78.2     | 129.2    | 211.5    |
| Runoff volume<br>$V_{24} = 1000xQ_{24}A \text{ (m}^3)$                 | 11997    | 19822    | 32448    |





## Worksheet 1: Runoff Parameters and Time of Concentration

Date: 08.06.2022

Project: Calcutta Farms Industrial By: WR Checked: CF Location: Matamata Date: 08.06.2022 (Pre-developed or post-developed) Scenario: Post-Developed SWC01B

1. Runoff Curve Number (CN) and Initial Abstraction (Ia)

| Soil name and<br>classification | Cover description (cover<br>type, treatment and<br>hydrologic condition) | Curve Number (CN) | Area<br>(m²) | Area<br>(km²) | Product of<br>CN x Area |  |
|---------------------------------|--------------------------------------------------------------------------|-------------------|--------------|---------------|-------------------------|--|
| Sand and Silt                   | Impervious                                                               | 98                | 138078       | 0.13808       | 13.532                  |  |
| Sand and Silt                   | Open Space, Soil Group B,                                                |                   |              |               |                         |  |
|                                 | between fair and good                                                    | 65                | 15342        | 0.01534       | 0.997                   |  |
|                                 |                                                                          | TOTALS            | 153420       | 0.15342       | 14.529                  |  |
| CN (weighted) =                 | <u>Total Product of CNxArea</u><br>Total Area                            | 94.7              |              |               |                         |  |

**Initial Abstraction** 

 $S = \left(\frac{1000}{CN} - 10\right) 25.4 \ (mm) =$ 14.2mm

 $I_{\alpha} =$  $0.05 \cdot S =$ 0.7mm

#### 2. Time of Concentration (T<sub>c</sub>)

(a) Sheet and shallow concentrated flow From Equation 7-2 or from Figure 7-1:

| Length L =  | 220m  |
|-------------|-------|
| Slope S =   | 0.5%  |
| mannings n= | 0.045 |

$$T_t = \frac{100nL^{0.33}}{S^{0.2}} = 30.6 \text{ min}$$

(b) Concentrated network flow

- i. Road channel flow from Figure 7-2:
- 0.00hr ii. Pipe network flow from Table 7-2 and Figure 7-3: Flat gradient (v=0.6m/s) and 220m of length 0.10hr = iii. Open channel flow from Equation 7-3:  $V = \frac{R^{2/3}S^{1/2}}{n}$  R=0.273, n=0.045, s=0.002, L=230m, v=0.42m/s = 0.15hr

=

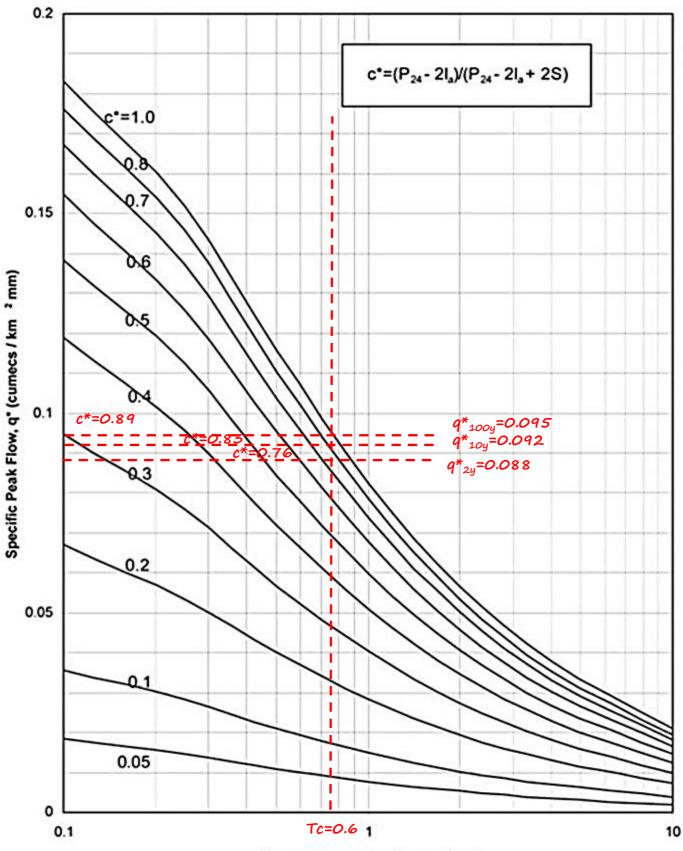
(c) Time of concentration  $T_c = T_{t1} + T_{t2} + \dots T_{tm} =$ 0.76hr SCS Lag for HEC-HMS:  $t_p = \frac{2}{3}t_c =$ 0.51hr

## Worksheet 2: Graphical Peak Flow Rate



| Project:  | Calcutta Farms Industrial | By: WR                           | Date: 08.06.2022 |
|-----------|---------------------------|----------------------------------|------------------|
| Location: | Matamata                  | Checked: CF                      | Date: 08.06.2022 |
| Scenario: | Post-Developed SWC01B     | (Pre-developed or post-developed | ł)               |

1. Data


| Catchment area (A)=         | 0.15342 | km <sup>2</sup>          |
|-----------------------------|---------|--------------------------|
| Runoff curve number (CN)=   | 94.7    | (from Worksheet 1)       |
| Initial abstraction (Ia)=   | 0.7     | (from Worksheet 1)       |
| Time of concentration (Tc)= | 0.76    | hours (from Worksheet 1) |

### 2. Storage

Storage (S) =

### 14.2 mm (from Worksheet 1)

|                                                            | Storm #1 | Storm #2 | Storm #3 |
|------------------------------------------------------------|----------|----------|----------|
| Average Recurrence Interval (ARI)                          | 2        | 10       | 100      |
| 24-hour rainfall depth P <sub>24</sub> (mm)                | 92.4     | 144.72   | 228.72   |
| Compute c*:<br>$P_{24} - 2I_a$                             |          |          |          |
| $c^* = \frac{P_{24} - 2I_a}{P_{24} - 2I_a + 2S}$           | 0.76     | 0.83     | 0.89     |
| Specific peak flow rate q* (from Figure 8-1)               | 0.088    | 0.092    | 0.095    |
| Peak flow rate<br>$q_p = q^* A P_{24}$ (m <sup>3</sup> /s) | 1.247    | 2.043    | 3.334    |
| Runoff depth                                               |          |          |          |
| $Q_{24} = \frac{(P_{24} - I_a)^2}{(P_{24} - I_a) + S}$     | 79.4     | 131.1    | 214.7    |
| Runoff volume<br>$V_{24} = 1000xQ_{24}A \text{ (m}^3)$     | 12182    | 20113    | 32939    |





## Worksheet 1: Runoff Parameters and Time of Concentration

Date: 08.06.2022

Project: Calcutta Farms Industrial By: WR Checked: CF Location: Matamata Date: 08.06.2022 (Pre-developed or post-developed) Scenario: Post-Developed SWC01B

1. Runoff Curve Number (CN) and Initial Abstraction (Ia)

| Soil name and<br>classification | Cover description (cover<br>type, treatment and<br>hydrologic condition) | Curve Number (CN) | Area<br>(m²) | Area<br>(km²) | Product of<br>CN x Area |  |
|---------------------------------|--------------------------------------------------------------------------|-------------------|--------------|---------------|-------------------------|--|
| Sand and Silt                   | Impervious                                                               | 98                | 138078       | 0.13808       | 13.532                  |  |
| Sand and Silt                   | Open Space, Soil Group B,                                                |                   |              |               |                         |  |
|                                 | between fair and good                                                    | 65                | 15342        | 0.01534       | 0.997                   |  |
|                                 |                                                                          | TOTALS            | 153420       | 0.15342       | 14.529                  |  |
| CN (weighted) =                 | <u>Total Product of CNxArea</u><br>Total Area                            | 94.7              |              |               |                         |  |

**Initial Abstraction** 

 $S = \left(\frac{1000}{CN} - 10\right) 25.4 \ (mm) =$ 14.2mm

 $I_{\alpha} =$  $0.05 \cdot S =$ 0.7mm

#### 2. Time of Concentration (T<sub>c</sub>)

(a) Sheet and shallow concentrated flow From Equation 7-2 or from Figure 7-1:

| Length L =  | 220m  |
|-------------|-------|
| Slope S =   | 0.5%  |
| mannings n= | 0.045 |

$$T_t = \frac{100nL^{0.33}}{S^{0.2}} = 30.6 \text{ min}$$

(b) Concentrated network flow

- i. Road channel flow from Figure 7-2:
- 0.00hr ii. Pipe network flow from Table 7-2 and Figure 7-3: Flat gradient (v=0.6m/s) and 220m of length 0.10hr = iii. Open channel flow from Equation 7-3:  $V = \frac{R^{2/3}S^{1/2}}{n}$  R=0.273, n=0.045, s=0.002, L=230m, v=0.42m/s = 0.15hr

=

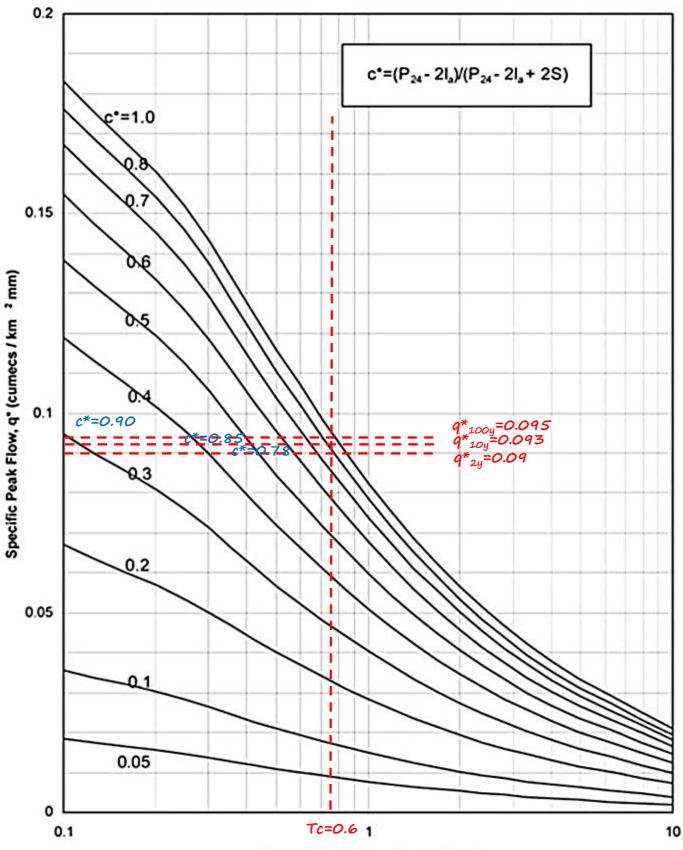
(c) Time of concentration  $T_c = T_{t1} + T_{t2} + \dots T_{tm} =$ 0.76hr SCS Lag for HEC-HMS:  $t_p = \frac{2}{3}t_c =$ 0.51hr

## Worksheet 2: Graphical Peak Flow Rate



| Project:  | Calcutta Farms Industrial | By: WR                           | Date: 08.06.2022 |
|-----------|---------------------------|----------------------------------|------------------|
| Location: | Matamata                  | Checked: CF                      | Date: 08.06.2022 |
| Scenario: | Post-Developed SWC01B     | (Pre-developed or post-developed | ł)               |

1. Data


| Catchment area (A)=         | 0.15342 | km <sup>2</sup>          |
|-----------------------------|---------|--------------------------|
| Runoff curve number (CN)=   | 94.7    | (from Worksheet 1)       |
| Initial abstraction (Ia)=   | 0.7     | (from Worksheet 1)       |
| Time of concentration (Tc)= | 0.76    | hours (from Worksheet 1) |

### 2. Storage

Storage (S) =

### 14.2 mm (from Worksheet 1)

|                                                                        | Storm #1     | Storm #2 | Storm #3 |
|------------------------------------------------------------------------|--------------|----------|----------|
| Average Recurrence Interval (ARI)                                      | 2            | 10       | 100      |
| 24-hour rainfall depth P <sub>24</sub> (mm)                            | 101          | 159.6    | 253.4    |
| Compute c*:<br>$c^* = \frac{P_{24} - 2I_a}{P_{24} - 2I_a + 2S}$        | <i>0</i> .78 | 0.85     | 0.9      |
| Specific peak flow rate q* (from Figure 8-1)                           | 0.09         | 0.093    | 0.095    |
| Peak flow rate<br>$q_p = q^* A P_{24}$ (m <sup>3</sup> /s)             | 1.395        | 2.277    | 3.693    |
| Runoff depth<br>$Q_{24} = \frac{(P_{24} - I_a)^2}{(P_{24} - I_a) + S}$ | 87.9         | 145.9    | 239.3    |
| Runoff volume<br>$V_{24} = 1000xQ_{24}A \text{ (m}^3)$                 | 13486        | 22384    | 36713    |



Time of Concentration, te (hrs)

## **APPENDIX B**

HEC-HMS output. Model was based on WRC TR20/06: Waikato stormwater runoff modelling guideline, and ARC TP108. Applied for catchment SWC01B.



**Project:** Calcutta\_Farms\_Industrial **Simulation Run:** EX\_2YR **Simulation Start:** 31 December 2021, 24:00 **Simulation End:** 1 January 2022, 24:00

**HMS Version:** 4.9 **Executed:** 16 June 2022, 03:12

## **Global Parameter Summary - Subbasin**

|              | Area (KM²)             |                |                     |
|--------------|------------------------|----------------|---------------------|
| Element Name |                        | Area (KM²)     |                     |
| Ex Swc01b    |                        | 0.15           |                     |
|              |                        |                |                     |
|              | Downstream             |                |                     |
| Element Name |                        | Downstream     |                     |
| Ex Swc01b    |                        | Sink - 1       |                     |
|              |                        |                |                     |
|              | Loss Rate: Scs         |                |                     |
| Element Name | Percent Impervious Are | a Curve Number | Initial Abstraction |
| Ex Swc01b    | 0                      | 44             | 16.2                |
|              |                        |                |                     |
|              | Transform: Scs         |                |                     |
| Element Name | Lag                    | Unitgr         | aph Type            |

## **Global Results Summary**

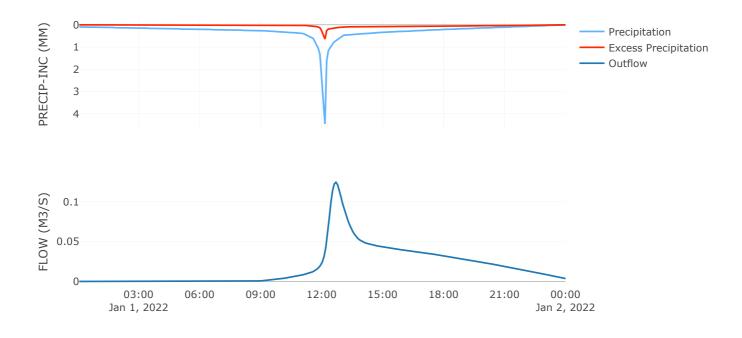
Ex Swcoib

| Hydrologic Element | Drainage Area (KM2) | Peak Discharge (M3/S) | Time of Peak     | Volume (MM) |
|--------------------|---------------------|-----------------------|------------------|-------------|
| Sink - 1           | 0.15                | 0.12                  | 01Jan2022, 12:40 | 10.5        |
| Ex Swc01b          | 0.15                | 0.12                  | 01Jan2022, 12:40 | 10.5        |

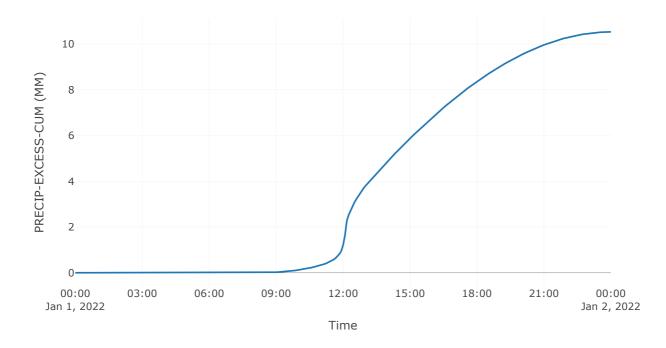
29.4

Standard

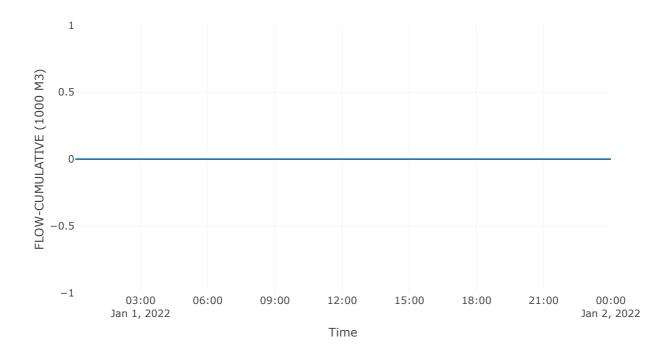
# Subbasin: EX\_SWC01B


Area (KM²) : 0.15 Downstream : Sink - 1

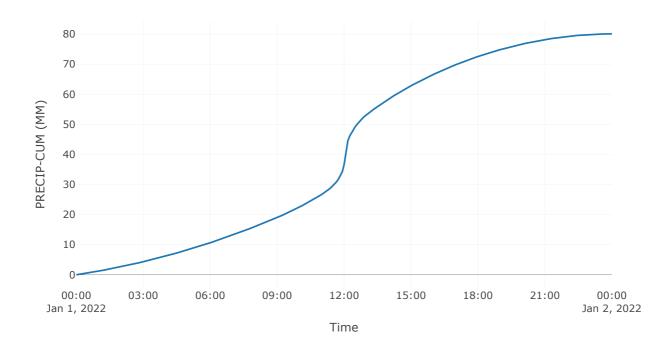
|                         | Loss Rate: Scs |
|-------------------------|----------------|
| Percent Impervious Area | 0              |
| Curve Number            | 44             |
| Initial Abstraction     | 16.2           |

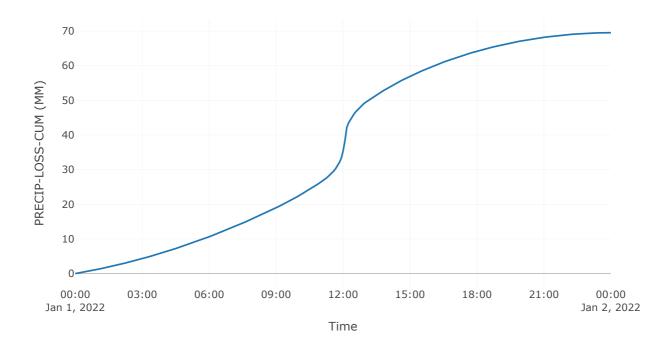

|                | Transform: Scs |
|----------------|----------------|
| Lag            | 29.4           |
| Unitgraph Type | Standard       |

| Results: EX_SWC01B        |                  |  |
|---------------------------|------------------|--|
| Peak Discharge (M3/S)     | 0.12             |  |
| Time of Peak Discharge    | 01Jan2022, 12:40 |  |
| Volume (MM)               | 10.5             |  |
| Precipitation Volume (M3) | 12282.81         |  |
| Loss Volume (M3)          | 10666.66         |  |
| Excess Volume (M3)        | 1616.14          |  |
| Direct Runoff Volume (M3) | 1610.47          |  |
| Baseflow Volume (M3)      | 0                |  |

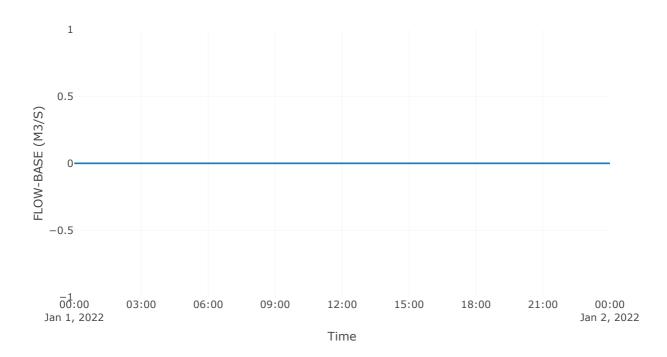

## Precipitation and Outflow



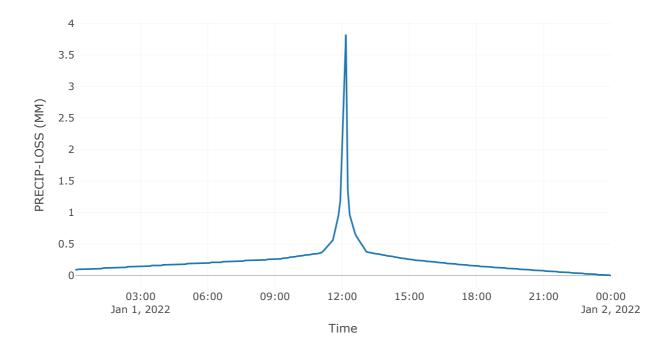

### Cumulative Excess Precipitation



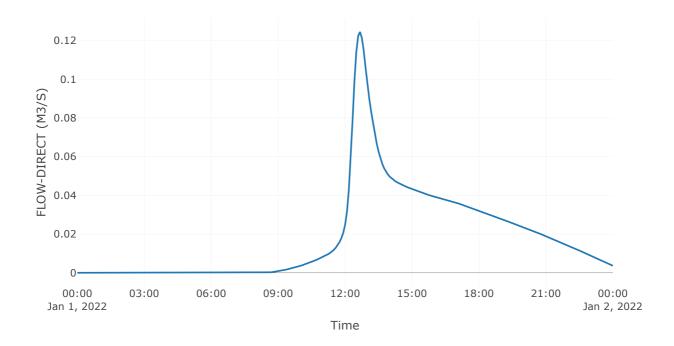

### Cumulative Outflow



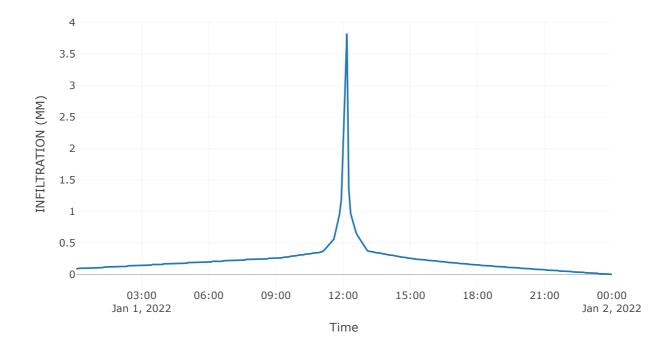

Cumulative Precipitation







#### Baseflow




### Precipitation Loss



Direct Runoff



## Soil Infiltration



**Project:** Calcutta\_Farms\_Industrial **Simulation Run:** EX\_IOYR **Simulation Start:** 31 December 2021, 24:00 **Simulation End:** 1 January 2022, 24:00

**HMS Version:** 4.9 **Executed:** 16 June 2022, 03:12

## **Global Parameter Summary - Subbasin**

|              | Area (KM²)              |              |                     |
|--------------|-------------------------|--------------|---------------------|
| Element Name |                         | Area (KM²)   |                     |
| Ex Swc01b    |                         | 0.15         |                     |
|              |                         |              |                     |
|              | Downstream              |              |                     |
| Element Name |                         | Downstream   |                     |
| Ex Swc01b    |                         | Sink - 1     |                     |
|              |                         |              |                     |
|              | Loss Rate: Scs          |              |                     |
| Element Name | Percent Impervious Area | Curve Number | Initial Abstraction |
| Ex Swc01b    | 0                       | 44           | 16.2                |
|              |                         |              |                     |
|              | Transform: Scs          |              |                     |
| Element Name | Lag                     | Unitgra      | ph Type             |

## **Global Results Summary**

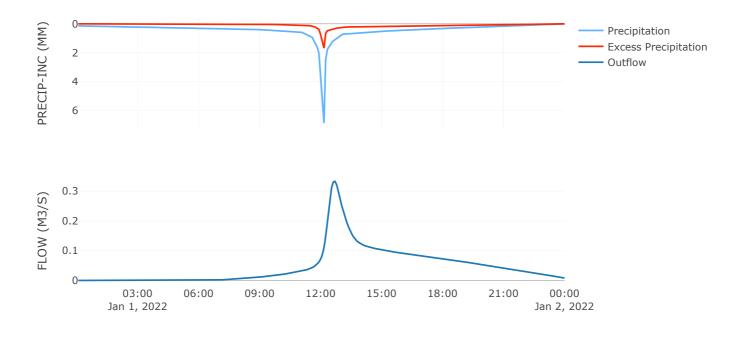
Ex Swcoib

| Hydrologic Element | Drainage Area (KM2) | Peak Discharge (M3/S) | Time of Peak     | Volume (MM) |
|--------------------|---------------------|-----------------------|------------------|-------------|
| Sink - 1           | 0.15                | 0.33                  | 01Jan2022, 12:40 | 26.56       |
| Ex Swc01b          | 0.15                | 0.33                  | 01Jan2022, 12:40 | 26.56       |

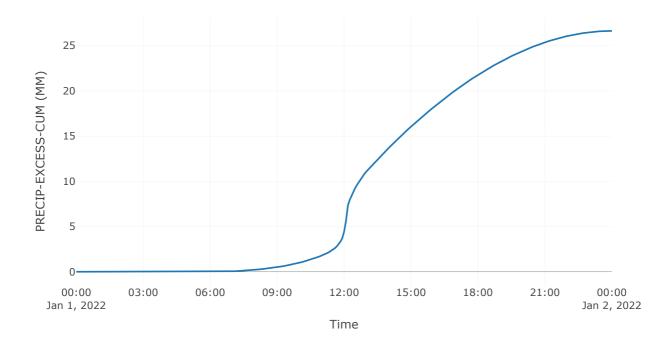
29.4

Standard

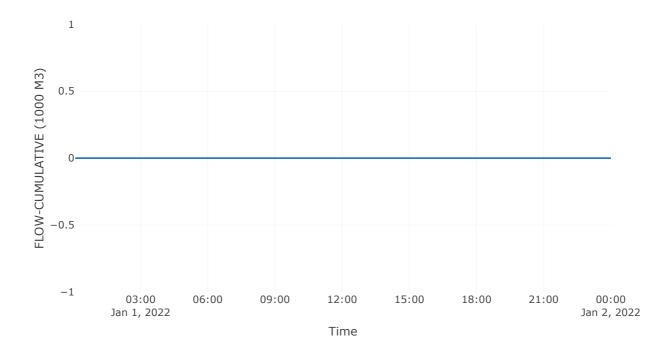
# Subbasin: EX\_SWC01B


Area (KM²) : 0.15 Downstream : Sink - 1

|                         | Loss Rate: Scs |
|-------------------------|----------------|
| Percent Impervious Area | 0              |
| Curve Number            | 44             |
| Initial Abstraction     | 16.2           |


| Transform: Scs |          |
|----------------|----------|
| Lag            | 29.4     |
| Unitgraph Type | Standard |

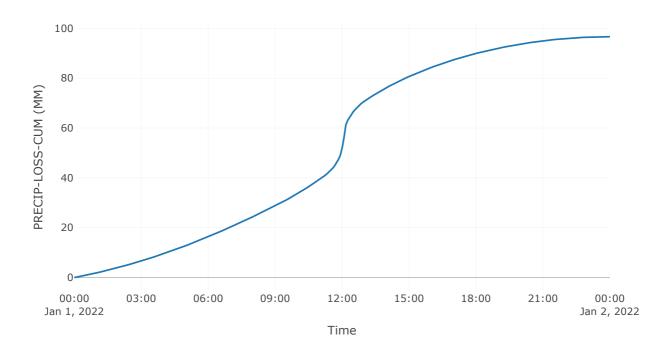
| Results: EX_SWC01B        |                  |  |
|---------------------------|------------------|--|
| Peak Discharge (M3/S)     | 0.33             |  |
| Time of Peak Discharge    | 01Jan2022, 12:40 |  |
| Volume (MM)               | 26.56            |  |
| Precipitation Volume (M3) | 18912.08         |  |
| Loss Volume (M3)          | 14825.1          |  |
| Excess Volume (M3)        | 4086.99          |  |
| Direct Runoff Volume (M3) | 4074.56          |  |
| Baseflow Volume (M3)      | 0                |  |


## Precipitation and Outflow

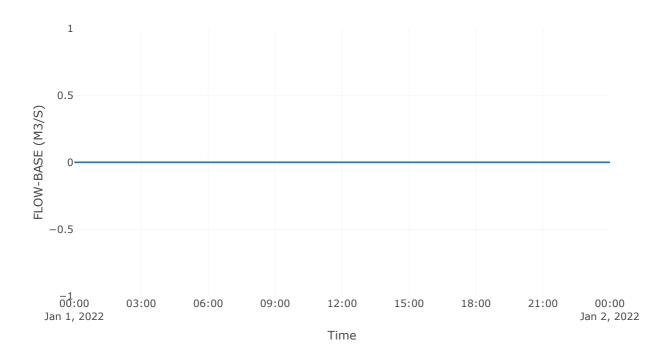


## Cumulative Excess Precipitation

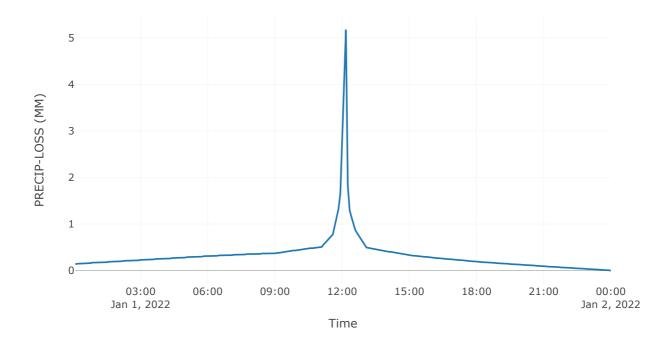



### Cumulative Outflow

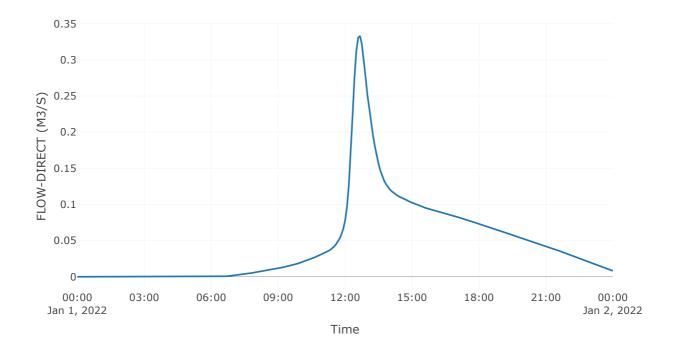



Cumulative Precipitation

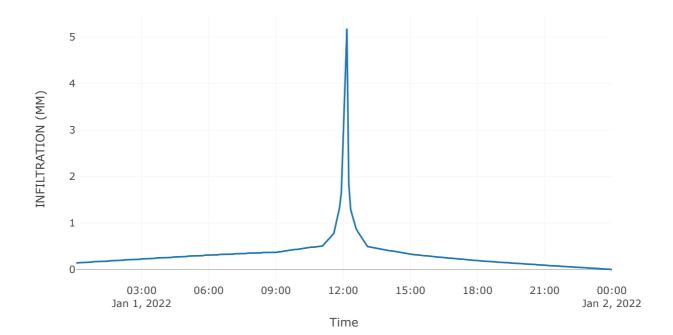








### Baseflow




### Precipitation Loss



Direct Runoff



## Soil Infiltration



**Project:** Calcutta\_Farms\_Industrial **Simulation Run:** EX\_100YR **Simulation Start:** 31 December 2021, 24:00 **Simulation End:** 1 January 2022, 24:00

**HMS Version:** 4.9 **Executed:** 16 June 2022, 03:12

## **Global Parameter Summary - Subbasin**

|              | Area (KM²)             |                |                     |
|--------------|------------------------|----------------|---------------------|
| Element Name |                        | Area (KM²)     |                     |
| Ex Swc01b    |                        | 0.15           |                     |
|              |                        |                |                     |
|              | Downstream             |                |                     |
| Element Name |                        | Downstream     |                     |
| Ex Swc01b    |                        | Sink - 1       |                     |
|              |                        |                |                     |
|              | Loss Rate: Scs         |                |                     |
| Element Name | Percent Impervious Are | a Curve Number | Initial Abstraction |
| Ex Swc01b    | 0                      | 44             | 16.2                |
|              |                        |                |                     |
|              | Transform: Scs         |                |                     |
| Element Name | Lag                    | Unitgr         | aph Type            |

## **Global Results Summary**

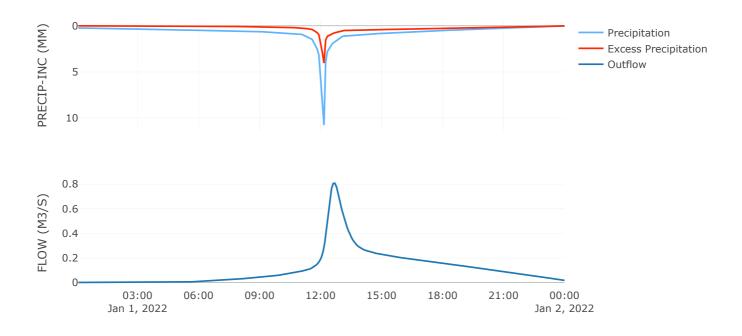
Ex Swc01b

| Hydrologic Element | Drainage Area (KM2) | Peak Discharge (M3/S) | Time of Peak     | Volume (MM) |
|--------------------|---------------------|-----------------------|------------------|-------------|
| Sink - 1           | 0.15                | 0.81                  | 01Jan2022, 12:40 | 62.43       |
| Ex Swc01b          | 0.15                | 0.81                  | 01Jan2022, 12:40 | 62.43       |

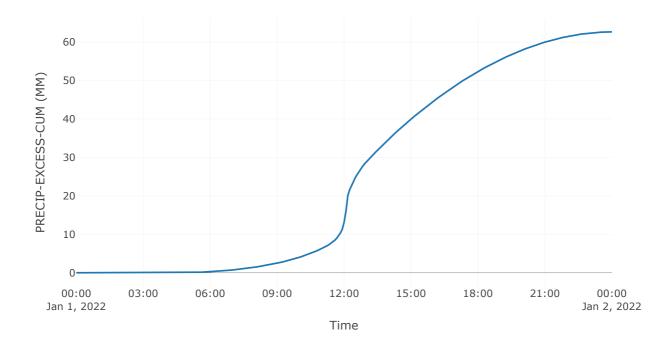
29.4

Standard

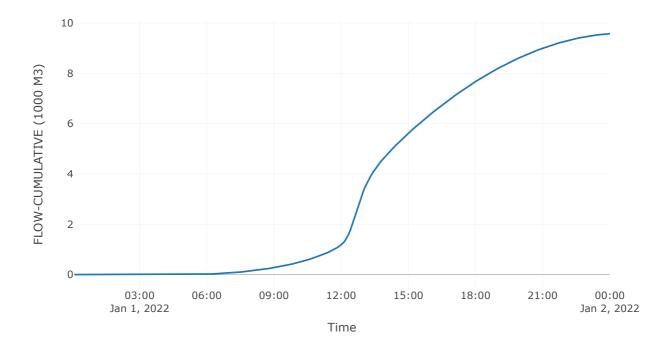
# Subbasin: EX\_SWC01B


Area (KM²) : 0.15 Downstream : Sink - 1

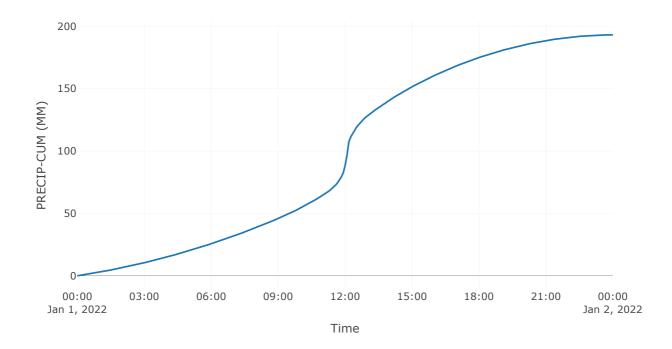
|                         | Loss Rate: Scs |
|-------------------------|----------------|
| Percent Impervious Area | 0              |
| Curve Number            | 44             |
| Initial Abstraction     | 16.2           |

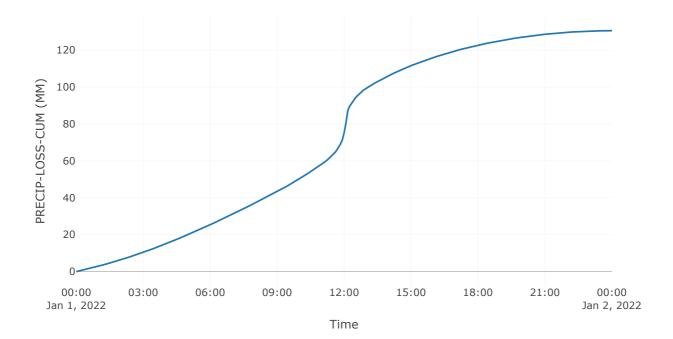

|                | Transform: Scs |
|----------------|----------------|
| Lag            | 29.4           |
| Unitgraph Type | Standard       |

|                           | Results: EX_SWC01B |
|---------------------------|--------------------|
| Peak Discharge (M3/S)     | 0.81               |
| Time of Peak Discharge    | 01Jan2022, 12:40   |
| Volume (MM)               | 62.43              |
| Precipitation Volume (M3) | 29636.14           |
| Loss Volume (M3)          | 20031.07           |
| Excess Volume (M3)        | 9605.07            |
| Direct Runoff Volume (M3) | 9578.72            |
| Baseflow Volume (M3)      | 0                  |

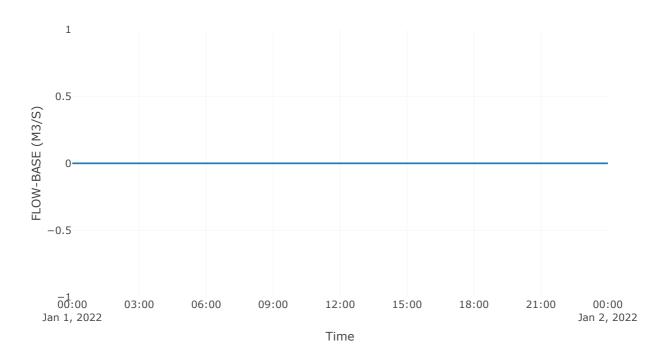

### Precipitation and Outflow



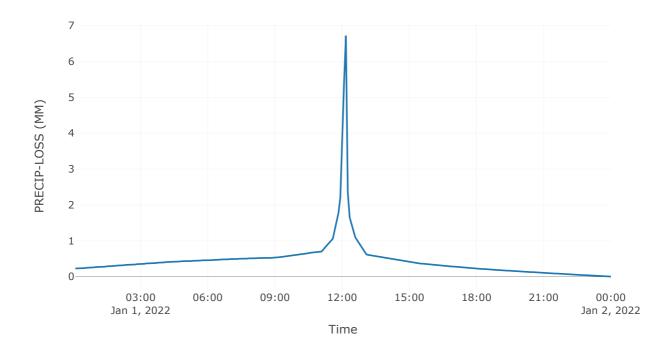

### Cumulative Excess Precipitation



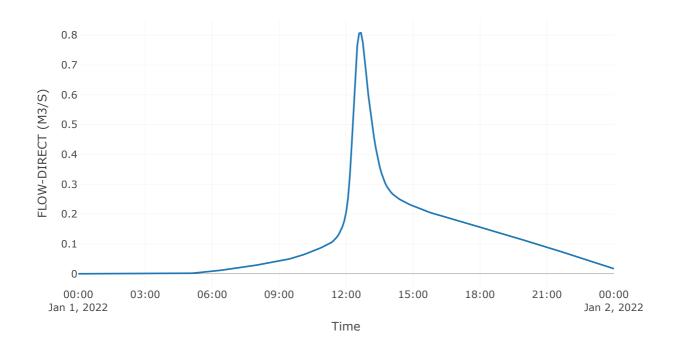

#### Cumulative Outflow



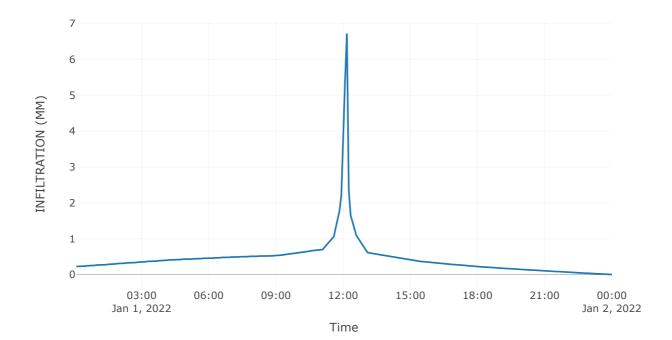

Cumulative Precipitation







#### Baseflow




#### Precipitation Loss



Direct Runoff



## Soil Infiltration



**Project:** Calcutta\_Farms\_Industrial **Simulation Run:** Post-Dev\_2YR\_CC\_2.IC **Simulation Start:** 31 December 2021, 24:00 **Simulation End:** 1 January 2022, 24:00

**HMS Version:** 4.9 **Executed:** 16 June 2022, 03:12

# **Global Parameter Summary - Subbasin**

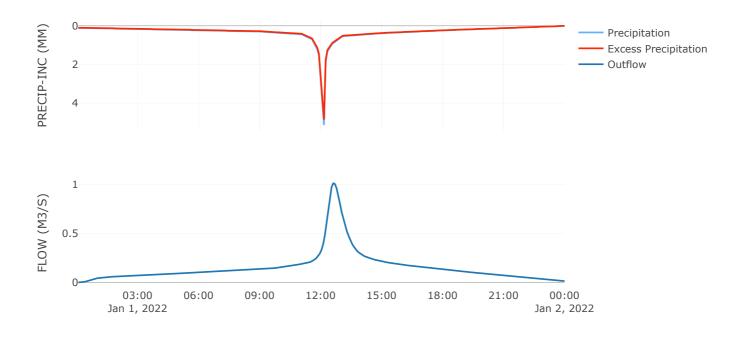
| Area (KM²)   |                         |              |                     |  |  |
|--------------|-------------------------|--------------|---------------------|--|--|
| Element Name | Area (KM²)              |              |                     |  |  |
| Swcoib       | 0.15                    |              |                     |  |  |
|              | Downstream              |              |                     |  |  |
| Element Name | Downstream              |              |                     |  |  |
| Swc01b       | Sink - 1 - Post - dev   |              |                     |  |  |
|              | Loss Rate: Scs          |              |                     |  |  |
| Element Name | Percent Impervious Area | Curve Number | Initial Abstraction |  |  |
| Swc01b       | 90                      | 65           | 0.7                 |  |  |
|              |                         | - )          | •                   |  |  |
|              |                         |              |                     |  |  |
|              | Transform: Scs          |              |                     |  |  |
| Element Name | Transform: Scs<br>Lag   |              | ph Type             |  |  |

## **Global Results Summary**

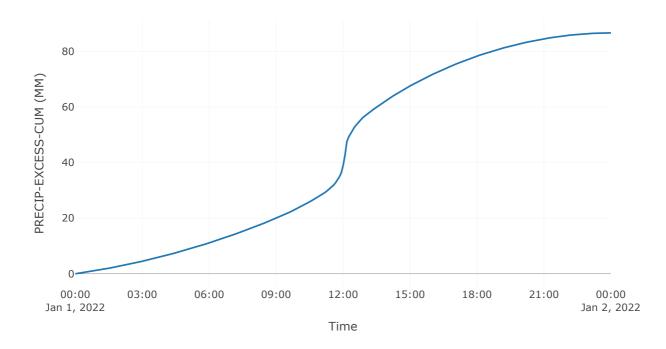
| Hydrologic Element    | Drainage Area (KM2) | Peak Discharge (M3/S) | <b>Time of Peak</b> | Volume (MM) |
|-----------------------|---------------------|-----------------------|---------------------|-------------|
| Swc01b                | 0.15                | I.0I                  | 01Jan2022, 12:35    | 86.55       |
| Sink - 1 - Post - dev | 0.15                | I.0I                  | 01Jan2022, 12:35    | 86.55       |

# Subbasin: SWC01B

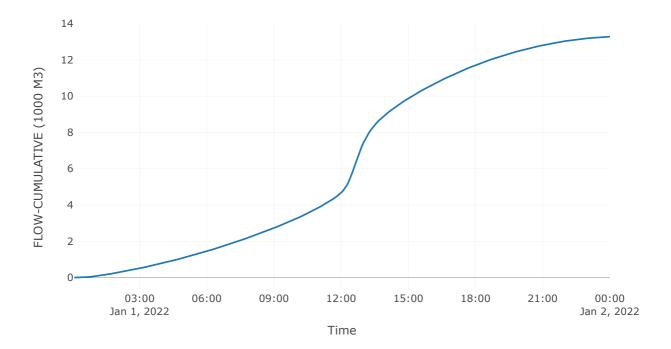
### **Area (KM²)** : 0.15


**Downstream** : Sink - I - Post - dev

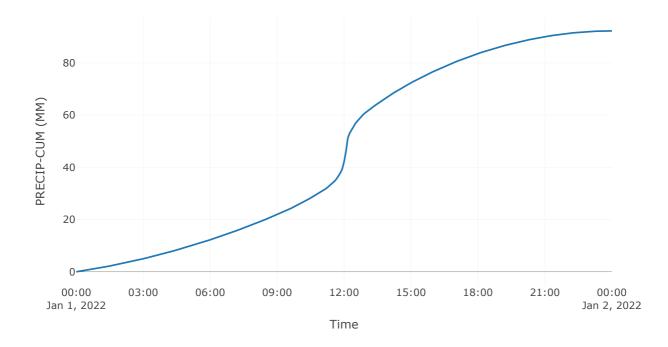
| Loss Rate: Scs          |     |  |  |
|-------------------------|-----|--|--|
| Percent Impervious Area | 90  |  |  |
| Curve Number            | 65  |  |  |
| Initial Abstraction     | 0.7 |  |  |

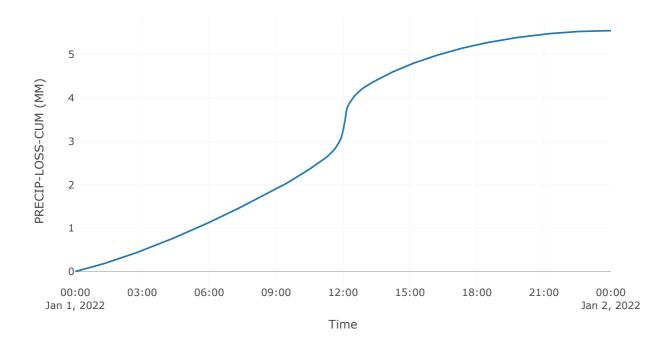

| Transform: Scs |          |  |  |  |
|----------------|----------|--|--|--|
| Lag            | 30.6     |  |  |  |
| Unitgraph Type | Standard |  |  |  |

| Results: SWC01B           |                  |  |  |  |
|---------------------------|------------------|--|--|--|
| Peak Discharge (M3/S)     | I.OI             |  |  |  |
| Time of Peak Discharge    | 01Jan2022, 12:35 |  |  |  |
| Volume (MM)               | 86.55            |  |  |  |
| Precipitation Volume (M3) | 14153            |  |  |  |
| Loss Volume (M3)          | 852.11           |  |  |  |
| Excess Volume (M3)        | 13300.89         |  |  |  |
| Direct Runoff Volume (M3) | 13278.3          |  |  |  |
| Baseflow Volume (M3)      | 0                |  |  |  |

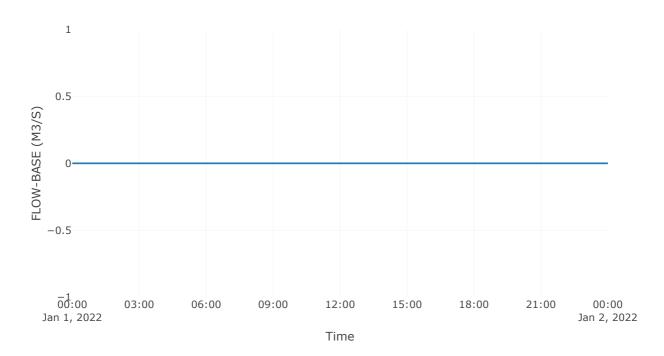

### Precipitation and Outflow



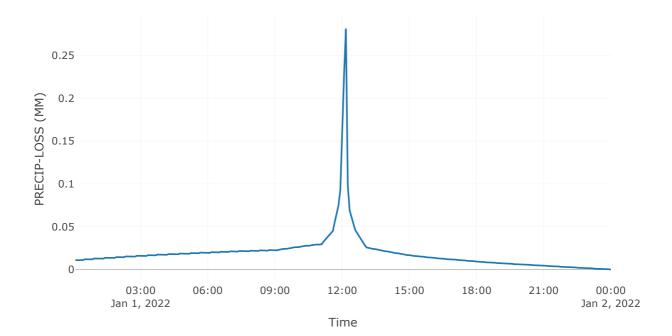

#### Cumulative Excess Precipitation



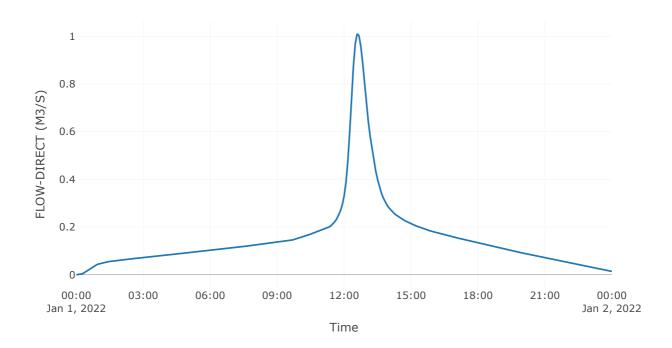

#### Cumulative Outflow



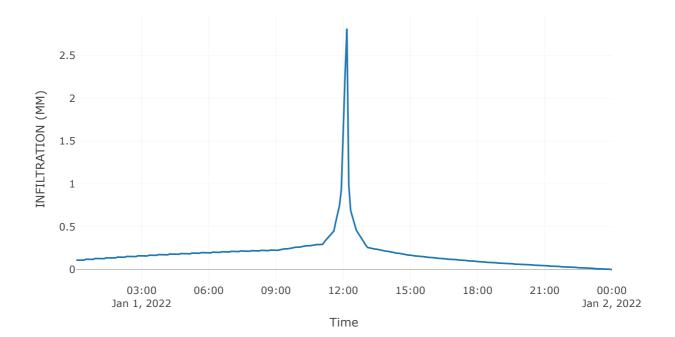

### Cumulative Precipitation







```
Baseflow
```




#### Precipitation Loss



Direct Runoff



## Soil Infiltration



**Project:** Calcutta\_Farms\_Industrial **Simulation Run:** Post-Dev\_IOYR\_CC\_2.IC **Simulation Start:** 3I December 2021, 24:00 **Simulation End:** I January 2022, 24:00

**HMS Version:** 4.9 **Executed:** 16 June 2022, 03:12

# **Global Parameter Summary - Subbasin**

| Area (KM²)             |                                                          |                     |                     |  |  |
|------------------------|----------------------------------------------------------|---------------------|---------------------|--|--|
| Element Name           | Area (KM²)                                               |                     |                     |  |  |
| Swcoib                 | 0.15                                                     |                     |                     |  |  |
|                        | Downstream                                               |                     |                     |  |  |
| Element Name           | Downstream                                               |                     |                     |  |  |
| Swcoib                 | Si                                                       | nk - 1 - Post - dev |                     |  |  |
|                        | Loss Rate: Scs                                           |                     |                     |  |  |
|                        | Percent Impervious Area Curve Number Initial Abstraction |                     |                     |  |  |
| Element Name           | Percent Impervious Area                                  | Curve Number        | Initial Abstraction |  |  |
| Element Name<br>Swcoib | Percent Impervious Area<br>90                            | Curve Number<br>65  | 0.7                 |  |  |
|                        |                                                          |                     |                     |  |  |
|                        |                                                          |                     |                     |  |  |
|                        | 90                                                       | 65                  |                     |  |  |

## **Global Results Summary**

| Hydrologic Element    | Drainage Area (KM2) | Peak Discharge (M3/S) | Time of Peak     | Volume (MM) |
|-----------------------|---------------------|-----------------------|------------------|-------------|
| Swc01b                | 0.15                | I.6                   | 01Jan2022, 12:35 | 137.09      |
| Sink - 1 - Post - dev | 0.15                | I.6                   | 01Jan2022, 12:35 | 137.09      |

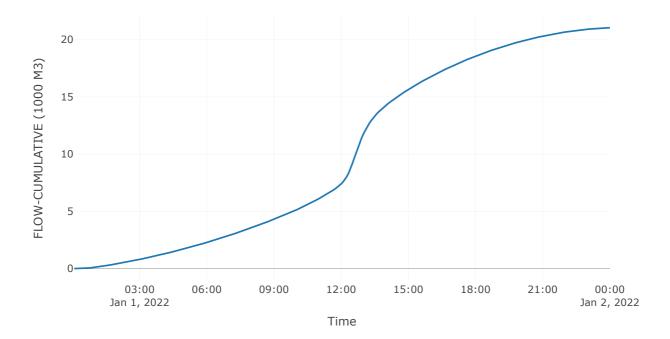
# Subbasin: SWC01B

### **Area (KM²)** : 0.15

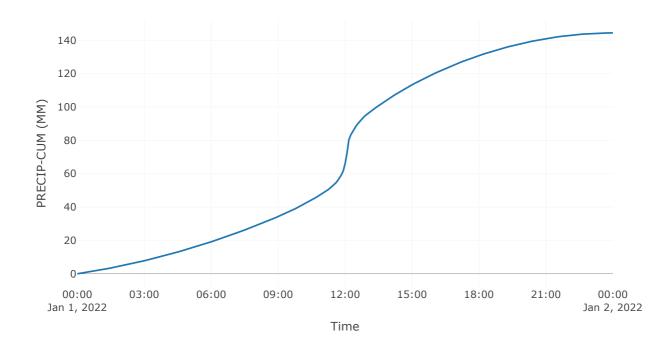
**Downstream** : Sink - I - Post - dev

| Loss Rate: Scs          |     |  |  |
|-------------------------|-----|--|--|
| Percent Impervious Area | 90  |  |  |
| Curve Number            | 65  |  |  |
| Initial Abstraction     | 0.7 |  |  |

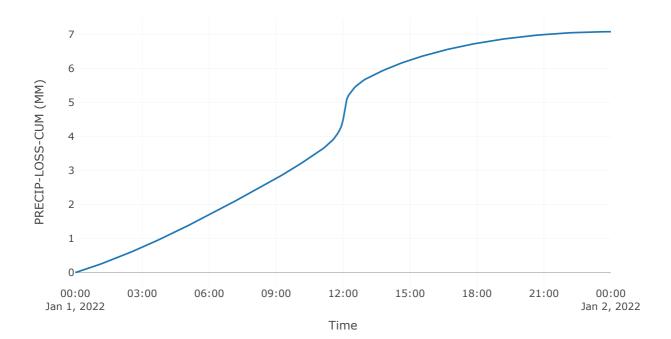
| Transform: Scs |          |  |  |
|----------------|----------|--|--|
| Lag            | 30.6     |  |  |
| Unitgraph Type | Standard |  |  |


| Results: SWC01B           |                  |  |  |  |
|---------------------------|------------------|--|--|--|
| Peak Discharge (M3/S)     | I.6              |  |  |  |
| Time of Peak Discharge    | 01Jan2022, 12:35 |  |  |  |
| Volume (MM)               | 137.09           |  |  |  |
| Precipitation Volume (M3) | 22155.38         |  |  |  |
| Loss Volume (M3)          | 1085.86          |  |  |  |
| Excess Volume (M3)        | 21069.52         |  |  |  |
| Direct Runoff Volume (M3) | 21031.77         |  |  |  |
| Baseflow Volume (M3)      | 0                |  |  |  |

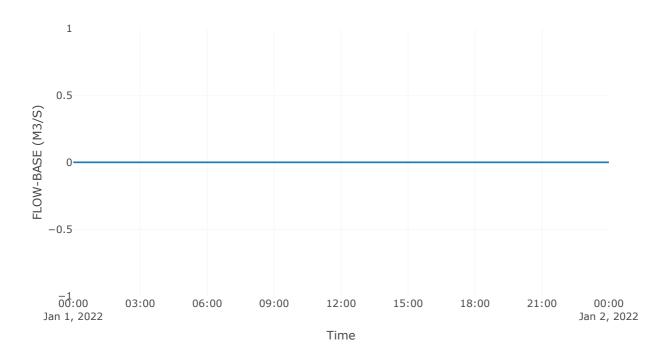
#### Precipitation and Outflow

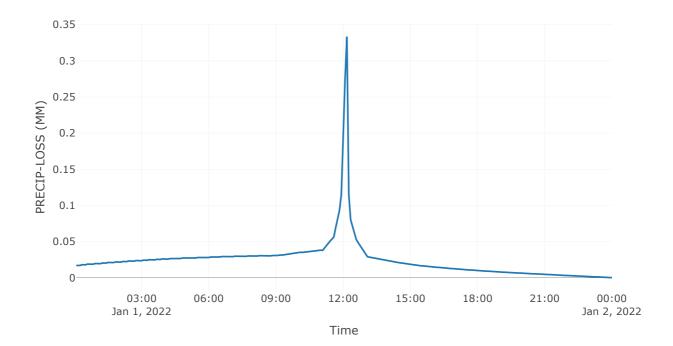



Time

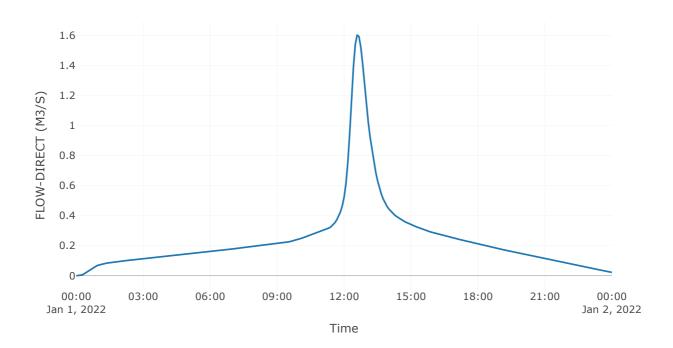

#### Cumulative Outflow




Cumulative Precipitation




#### Cumulative Precipitation Loss




#### Baseflow





Direct Runoff





**Project:** Calcutta\_Farms\_Industrial **Simulation Run:** Post-Dev\_100YR\_CC\_2.1C **Simulation Start:** 31 December 2021, 24:00 **Simulation End:** 1 January 2022, 24:00

**HMS Version:** 4.9 **Executed:** 16 June 2022, 03:12

# **Global Parameter Summary - Subbasin**

| Area (KM²)   |                        |                |                     |  |  |
|--------------|------------------------|----------------|---------------------|--|--|
| Element Name | Area (KM²)             |                |                     |  |  |
| Swc01b       | 0.15                   |                |                     |  |  |
|              |                        |                |                     |  |  |
|              | Downstream             |                |                     |  |  |
| Element Name | Downstream             |                |                     |  |  |
| Swcoib       | Sink - 1 - Post - dev  |                |                     |  |  |
|              |                        |                |                     |  |  |
|              | Loss Rate: Scs         |                |                     |  |  |
| Element Name | Percent Impervious Are | a Curve Number | Initial Abstraction |  |  |
| Swcoib       | 90                     | 65             | 0.7                 |  |  |
|              |                        |                |                     |  |  |
|              | Transform: Scs         | ;              |                     |  |  |
| Element Name | Lag                    | Unitgra        | aph Type            |  |  |

## **Global Results Summary**

Swcoib

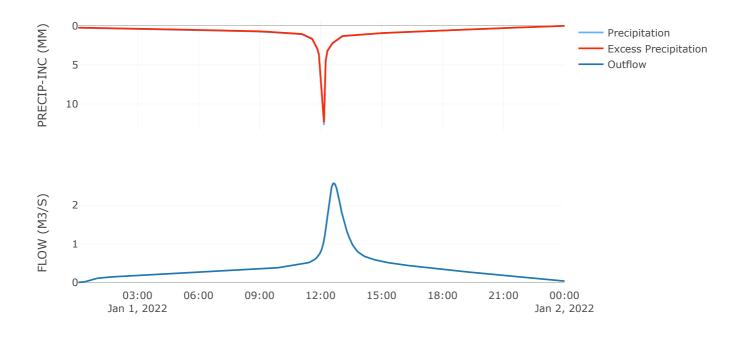
| Hydrologic Element    | Drainage Area (KM2) | Peak Discharge (M3/S) | <b>Time of Peak</b> | Volume (MM) |
|-----------------------|---------------------|-----------------------|---------------------|-------------|
| Swc01b                | 0.15                | 2.57                  | 01Jan2022, 12:35    | 219.11      |
| Sink - 1 - Post - dev | 0.15                | 2.57                  | 01Jan2022, 12:35    | 219.11      |

30.6

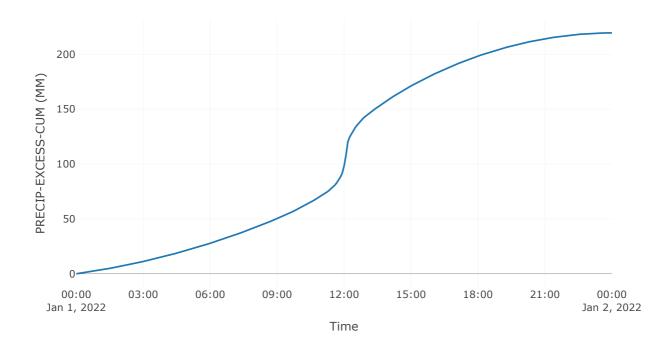
Standard

# Subbasin: SWC01B

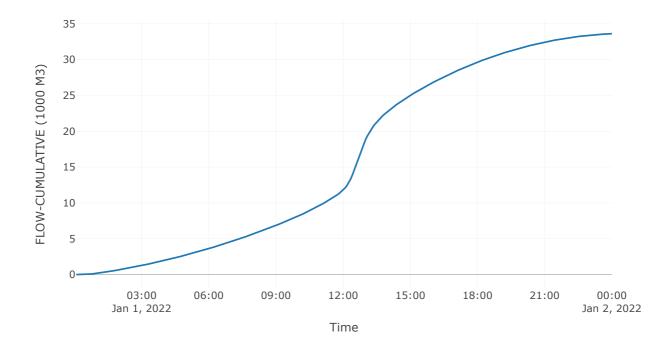
### **Area (KM²)** : 0.15


Downstream : Sink - I - Post - dev

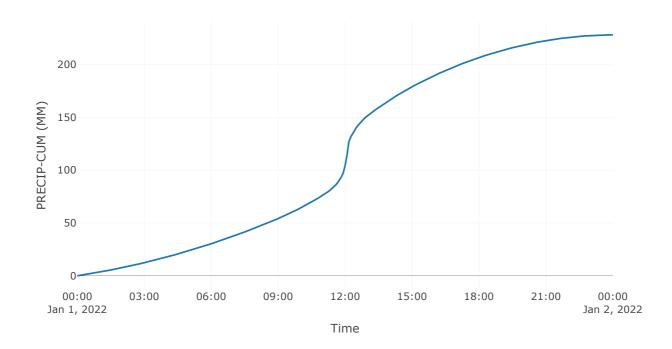
|                         | Loss Rate: Scs |
|-------------------------|----------------|
| Percent Impervious Area | 90             |
| Curve Number            | 65             |
| Initial Abstraction     | 0.7            |

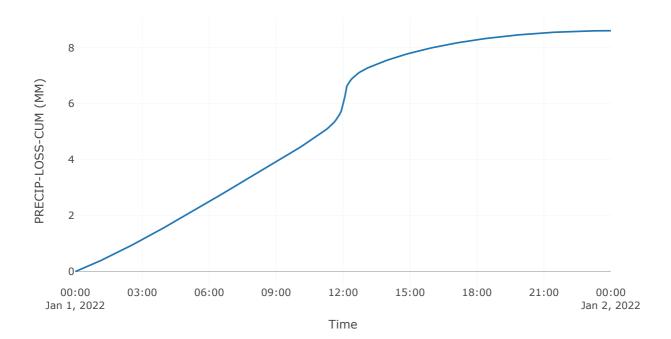

| Transform: Scs |          |
|----------------|----------|
| Lag            | 30.6     |
| Unitgraph Type | Standard |

| Results: SWC01B           |                  |  |
|---------------------------|------------------|--|
| Peak Discharge (M3/S)     | 2.57             |  |
| Time of Peak Discharge    | 01Jan2022, 12:35 |  |
| Volume (MM)               | 219.11           |  |
| Precipitation Volume (M3) | 34993.57         |  |
| Loss Volume (M3)          | 1320.98          |  |
| Excess Volume (M3)        | 33672.59         |  |
| Direct Runoff Volume (M3) | 33615.4          |  |
| Baseflow Volume (M3)      | 0                |  |

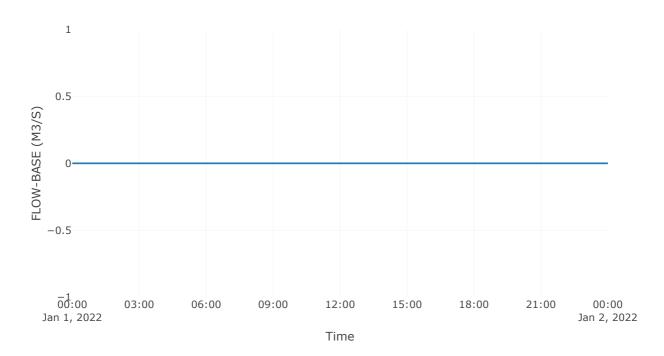

### Precipitation and Outflow

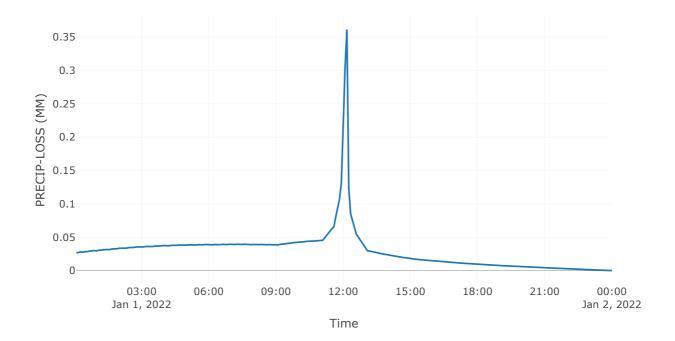



#### Cumulative Excess Precipitation

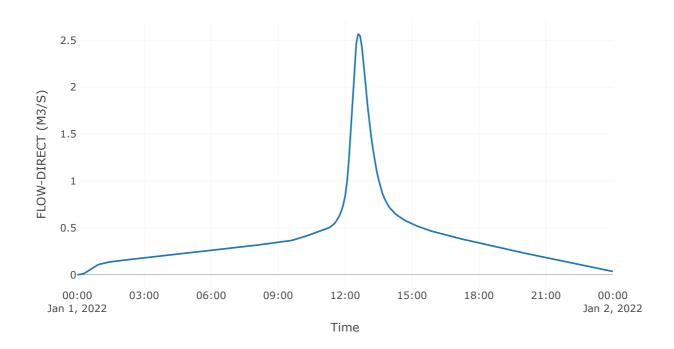



### Cumulative Outflow

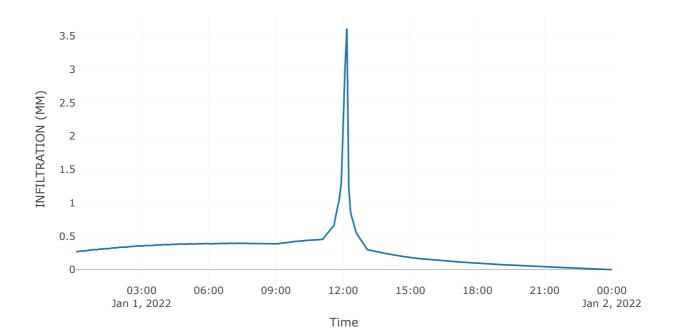




Cumulative Precipitation






```
Baseflow
```






Direct Runoff



### Soil Infiltration



**Project:** Calcutta\_Farms\_Industrial **Simulation Run:** Post-Dev\_2YR\_CC\_2.3C **Simulation Start:** 31 December 2021, 24:00 **Simulation End:** 1 January 2022, 24:00

**HMS Version:** 4.9 **Executed:** 16 June 2022, 03:12

# **Global Parameter Summary - Subbasin**

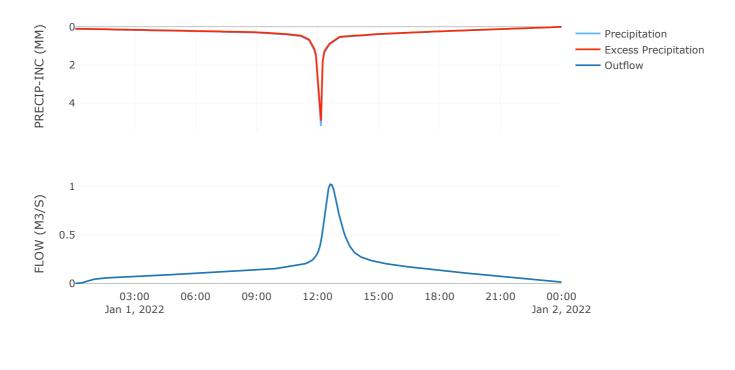
|              | Area (KM²)              |                      |                     |
|--------------|-------------------------|----------------------|---------------------|
| Element Name |                         | Area (KM²)           |                     |
| Swcoib       |                         | 0.15                 |                     |
|              | Downstream              |                      |                     |
| Element Name | Downstream              |                      |                     |
| Swc01b       | S                       | ink - 1 - Post - dev |                     |
|              | Loss Rate: Scs          |                      |                     |
| Element Name | Percent Impervious Area | Curve Number         | Initial Abstraction |
| Swc01b       | 90                      | 65                   | 0.7                 |
|              |                         | - )                  | •                   |
|              |                         |                      |                     |
|              | Transform: Scs          |                      |                     |
| Element Name | Transform: Scs<br>Lag   |                      | ph Type             |

## **Global Results Summary**

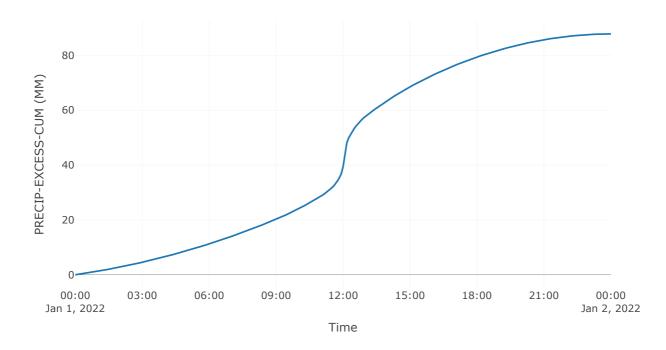
| Hydrologic Element    | Drainage Area (KM2) | Peak Discharge (M3/S) | Time of Peak     | Volume (MM) |
|-----------------------|---------------------|-----------------------|------------------|-------------|
| Swco1b                | 0.15                | I.O2                  | 01Jan2022, 12:35 | 87.67       |
| Sink - 1 - Post - dev | 0.15                | I.O2                  | 01Jan2022, 12:35 | 87.67       |

# Subbasin: SWC01B

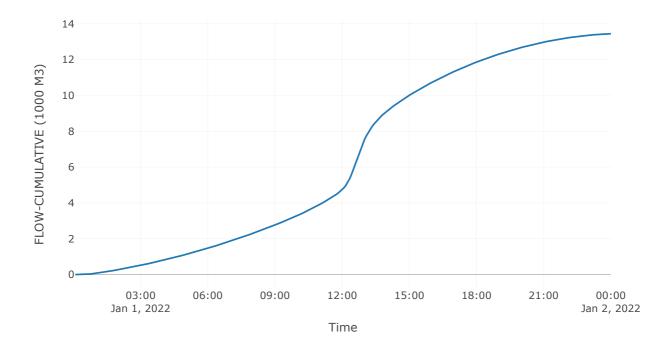
### **Area (KM²)** : 0.15


**Downstream** : Sink - I - Post - dev

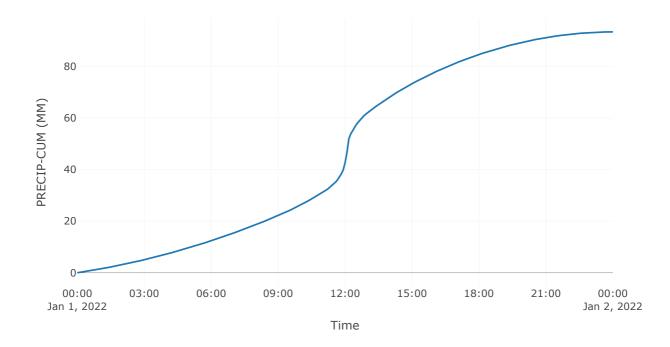
|                         | Loss Rate: Scs |
|-------------------------|----------------|
| Percent Impervious Area | 90             |
| Curve Number            | 65             |
| Initial Abstraction     | 0.7            |

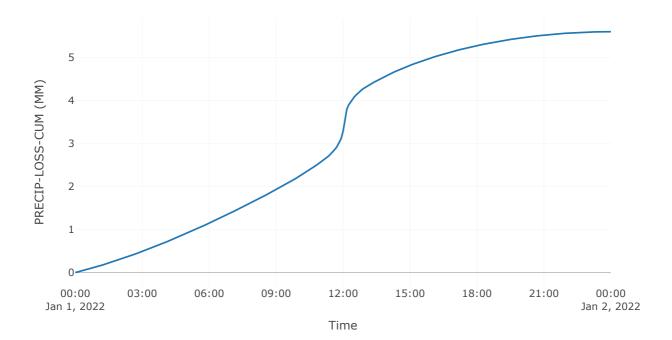

| Transform: Scs |          |
|----------------|----------|
| Lag            | 30.6     |
| Unitgraph Type | Standard |

| Results: SWC01B           |                  |  |
|---------------------------|------------------|--|
| Peak Discharge (M3/S)     | I.O2             |  |
| Time of Peak Discharge    | 01Jan2022, 12:35 |  |
| Volume (MM)               | 87.67            |  |
| Precipitation Volume (M3) | 14330.96         |  |
| Loss Volume (M3)          | 858.46           |  |
| Excess Volume (M3)        | 13472.5          |  |
| Direct Runoff Volume (M3) | 13449.91         |  |
| Baseflow Volume (M3)      | 0                |  |

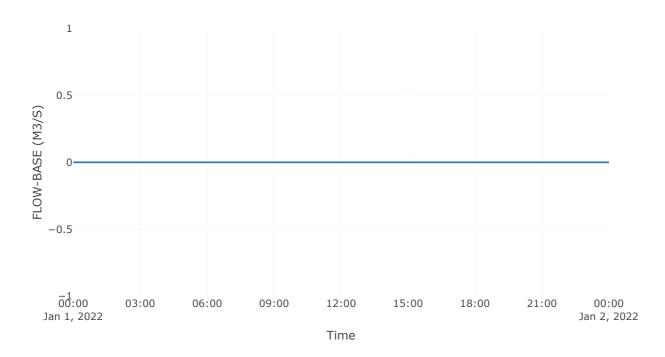

### Precipitation and Outflow



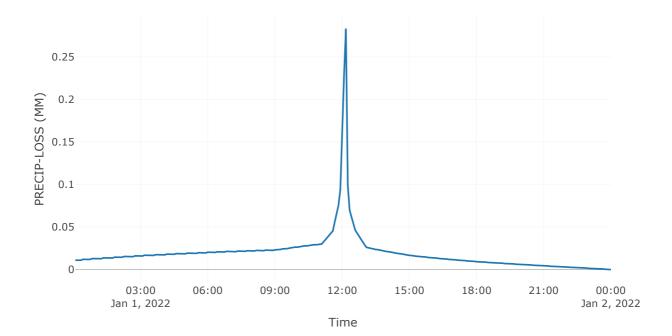

#### Cumulative Excess Precipitation



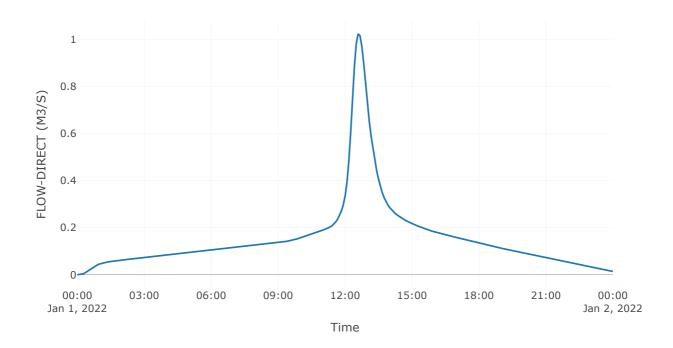

#### Cumulative Outflow



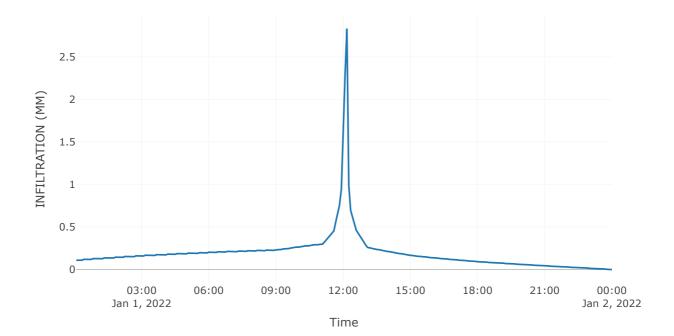

### Cumulative Precipitation







#### Baseflow




### Precipitation Loss



Direct Runoff



## Soil Infiltration



**Project:** Calcutta\_Farms\_Industrial Simulation Run: Post-Dev\_IOYR\_CC\_2.3C Simulation Start: 31 December 2021, 24:00 Simulation End: I January 2022, 24:00

**HMS Version:** 4.9 **Executed:** 16 June 2022, 03:12

# **Global Parameter Summary - Subbasin**

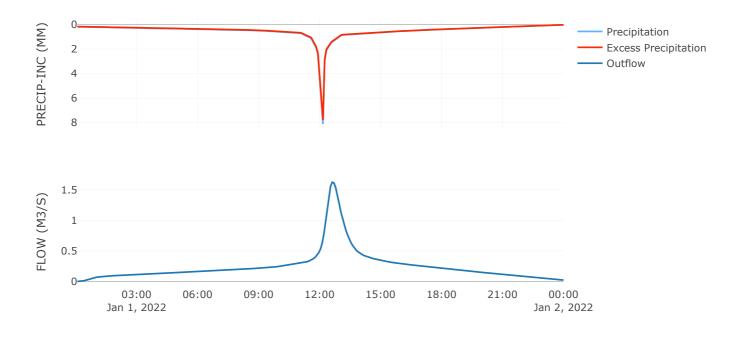
|              | Area (KM²)             |                       |                     |
|--------------|------------------------|-----------------------|---------------------|
| Element Name | Area (KM²)             |                       |                     |
| Swcoib       |                        | 0.15                  |                     |
|              | Downstream             |                       |                     |
| Element Name | Downstream             |                       |                     |
| Swcoib       |                        | Sink - 1 - Post - dev |                     |
|              | Loss Rate: Scs         |                       |                     |
| Element Name | Percent Impervious Are | a Curve Number        | Initial Abstraction |
| Swcoib       | 90                     | 65                    | 0.7                 |
|              |                        |                       |                     |
|              | Transform: Scs         |                       |                     |
| Element Name | Lag                    | Unitgra               | aph Type            |
| Swcoib       | 30.6                   | Sta                   |                     |

## **Global Results Summary**

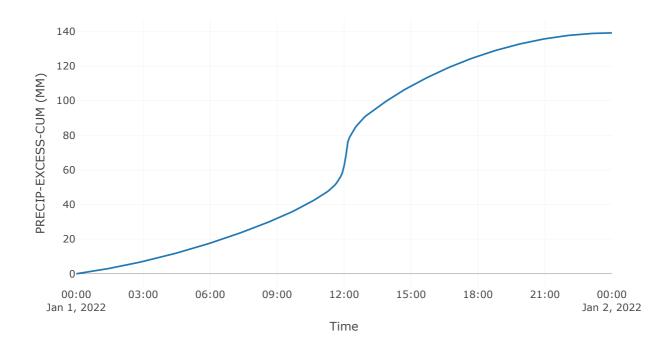
| Hydrologic Element    | Drainage Area (KM2) | Peak Discharge (M3/S) | <b>Time of Peak</b> | Volume (MM) |
|-----------------------|---------------------|-----------------------|---------------------|-------------|
| Swc01b                | 0.15                | 1.63                  | 01Jan2022, 12:35    | 138.96      |
| Sink - 1 - Post - dev | 0.15                | 1.63                  | 01Jan2022, 12:35    | 138.96      |

# Subbasin: SWC01B

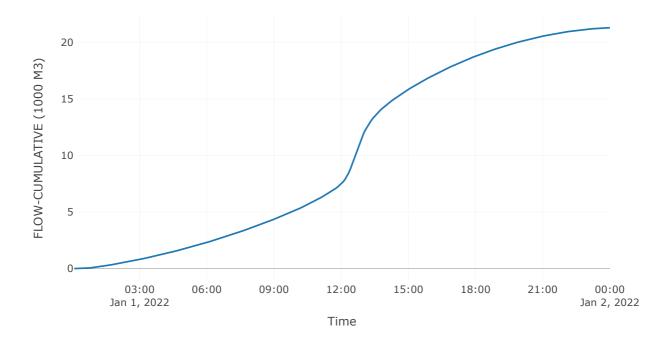
### **Area (KM²)** : 0.15


**Downstream** : Sink - I - Post - dev

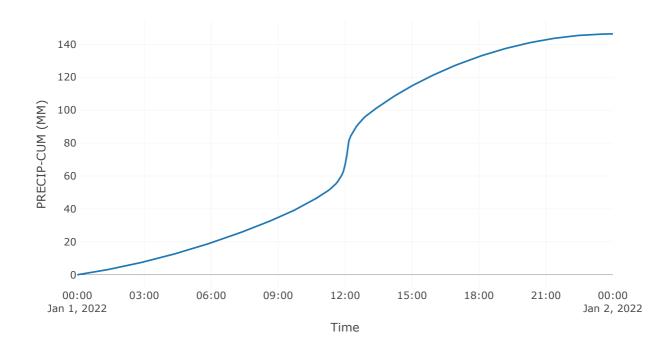
|                         | Loss Rate: Scs |
|-------------------------|----------------|
| Percent Impervious Area | 90             |
| Curve Number            | 65             |
| Initial Abstraction     | 0.7            |


|                | Transform: Scs |
|----------------|----------------|
| Lag            | 30.6           |
| Unitgraph Type | Standard       |

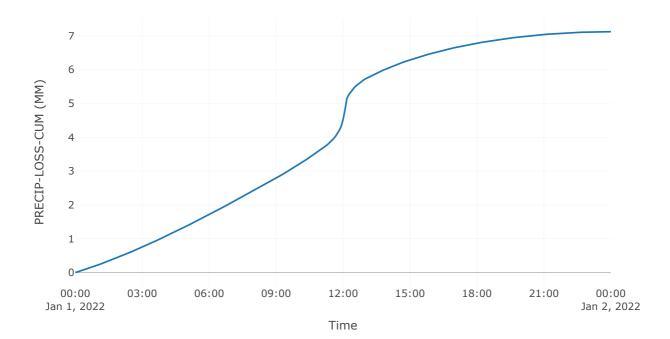
| Results: SWC01B           |                  |
|---------------------------|------------------|
| Peak Discharge (M3/S)     | 1.63             |
| Time of Peak Discharge    | 01Jan2022, 12:35 |
| Volume (MM)               | 138.96           |
| Precipitation Volume (M3) | 22449.95         |
| Loss Volume (M3)          | 1092.82          |
| Excess Volume (M3)        | 21357.13         |
| Direct Runoff Volume (M3) | 21319.32         |
| Baseflow Volume (M3)      | 0                |


#### Precipitation and Outflow

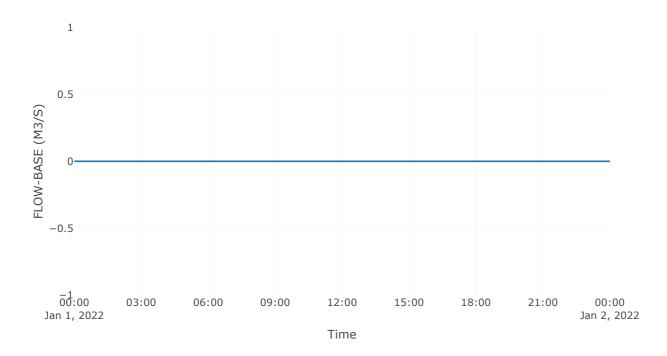


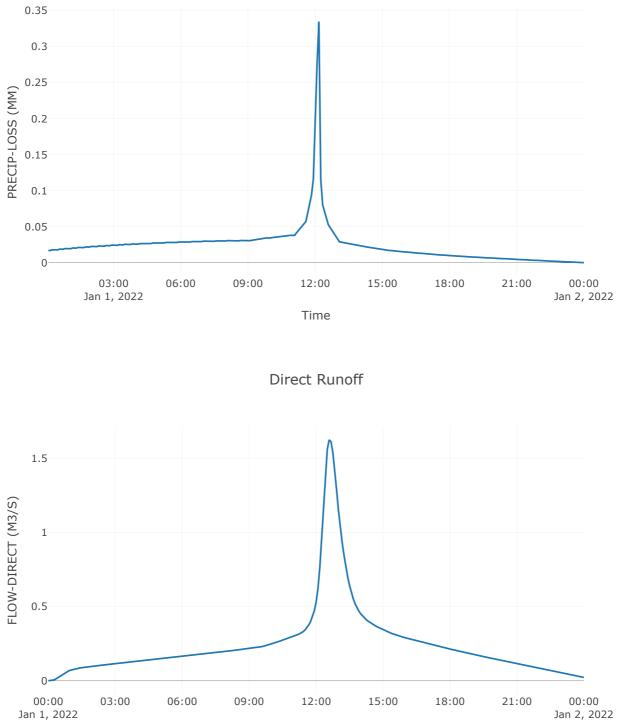

#### Cumulative Excess Precipitation



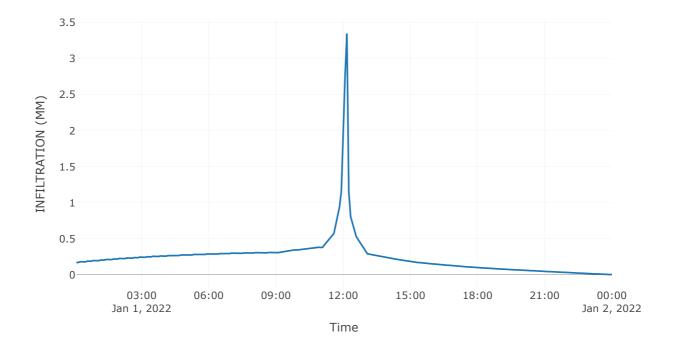

#### Cumulative Outflow




Cumulative Precipitation




#### Cumulative Precipitation Loss




#### Baseflow





Time



**Project:** Calcutta\_Farms\_Industrial Simulation Run: Post-Dev\_100YR\_CC\_2.3C Simulation Start: 31 December 2021, 24:00 Simulation End: I January 2022, 24:00

**HMS Version:** 4.9 **Executed:** 16 June 2022, 03:12

# **Global Parameter Summary - Subbasin**

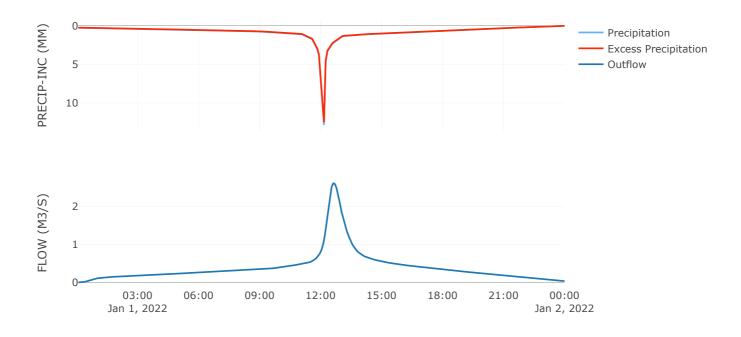
| Area (KM²)     |                        |                       |                     |  |  |
|----------------|------------------------|-----------------------|---------------------|--|--|
| Element Name   | Area (KM²)             |                       |                     |  |  |
| Swcoib         | 0.15                   |                       |                     |  |  |
|                | Downstream             |                       |                     |  |  |
| Element Name   | Downstream             |                       |                     |  |  |
| Swcoib         |                        | Sink - 1 - Post - dev |                     |  |  |
| Loss Rate: Scs |                        |                       |                     |  |  |
| Element Name   | Percent Impervious Are | a Curve Number        | Initial Abstraction |  |  |
| Swcoib         | 90                     | 65                    | 0.7                 |  |  |
|                |                        |                       |                     |  |  |
|                | Transform: Scs         |                       |                     |  |  |
| Element Name   | Lag                    | Unitgra               | aph Type            |  |  |
| Swcoib         | 30.6                   | Sta                   |                     |  |  |

## **Global Results Summary**

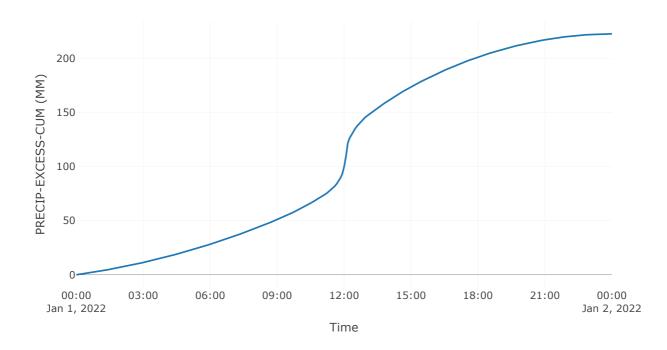
| Hydrologic Element    | Drainage Area (KM2) | Peak Discharge (M3/S) | <b>Time of Peak</b> | Volume (MM) |
|-----------------------|---------------------|-----------------------|---------------------|-------------|
| Swco1b                | 0.15                | 2.61                  | 01Jan2022, 12:35    | 222.16      |
| Sink - 1 - Post - dev | 0.15                | 2.61                  | 01Jan2022, 12:35    | 222.16      |

# Subbasin: SWC01B

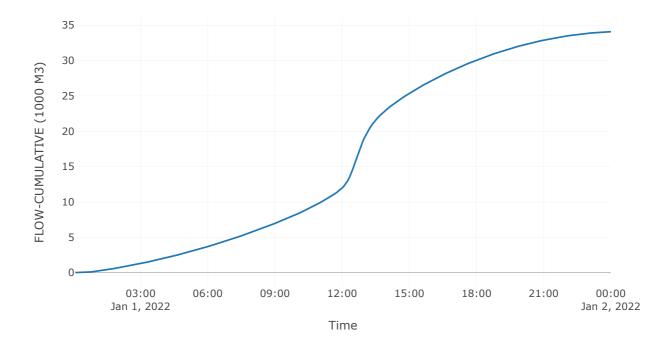
### **Area (KM²)** : 0.15


Downstream : Sink - I - Post - dev

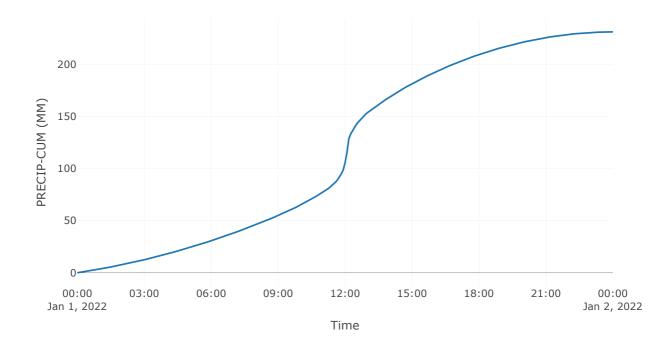
|                         | Loss Rate: Scs |
|-------------------------|----------------|
| Percent Impervious Area | 90             |
| Curve Number            | 65             |
| Initial Abstraction     | 0.7            |

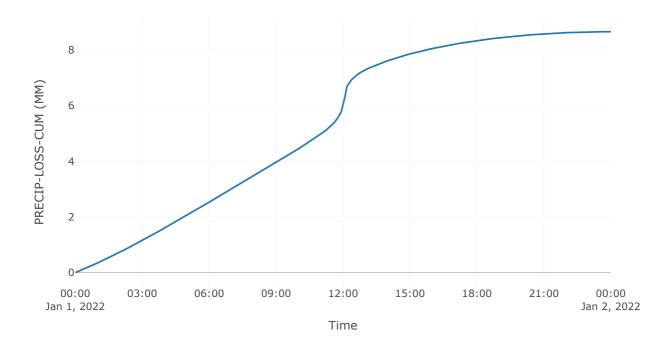

| Transform: Scs |          |  |  |
|----------------|----------|--|--|
| Lag            | 30.6     |  |  |
| Unitgraph Type | Standard |  |  |

| Results: SWCorB           |                  |  |  |
|---------------------------|------------------|--|--|
| Peak Discharge (M3/S)     | 2.61             |  |  |
| Time of Peak Discharge    | 01Jan2022, 12:35 |  |  |
| Volume (MM)               | 222.16           |  |  |
| Precipitation Volume (M3) | 35469.17         |  |  |
| Loss Volume (M3)          | 1327.63          |  |  |
| Excess Volume (M3)        | 34141.54         |  |  |
| Direct Runoff Volume (M3) | 34084.12         |  |  |
| Baseflow Volume (M3)      | 0                |  |  |

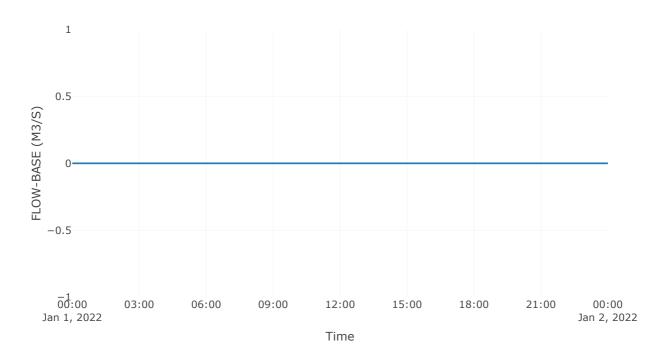

### Precipitation and Outflow

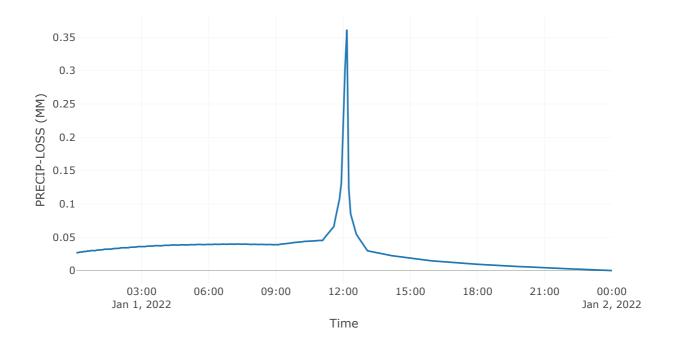



#### Cumulative Excess Precipitation

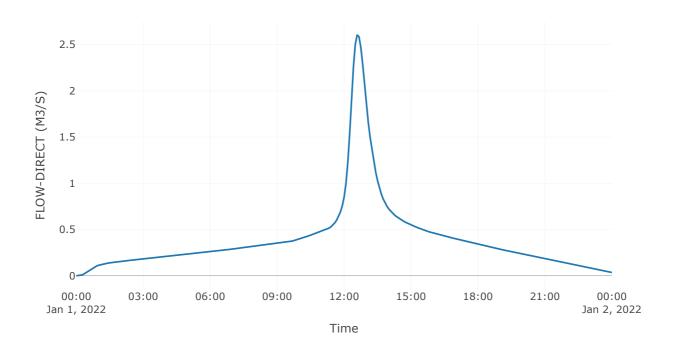



#### Cumulative Outflow

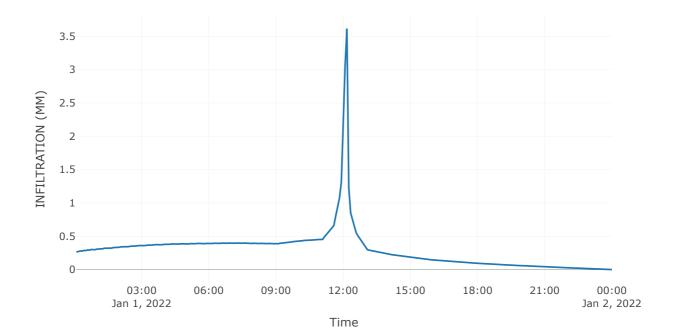




### Cumulative Precipitation






```
Baseflow
```






Direct Runoff



### Soil Infiltration



**Project:** Calcutta\_Farms\_Industrial **Simulation Run:** Post-Dev\_2YR\_CC\_3.8C **Simulation Start:** 31 December 2021, 24:00 **Simulation End:** 1 January 2022, 24:00

**HMS Version:** 4.9 **Executed:** 16 June 2022, 03:12

# **Global Parameter Summary - Subbasin**

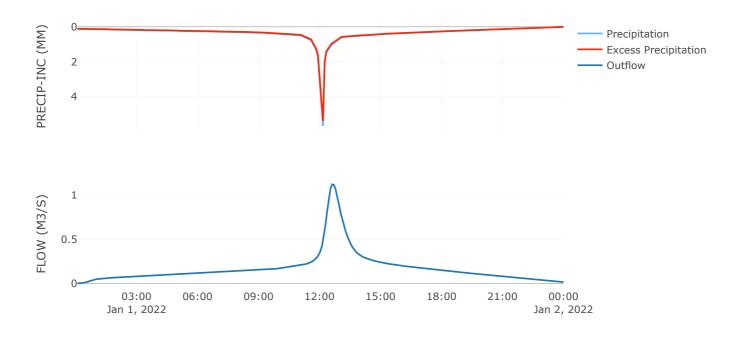
| Area (KM²)   |                         |              |                     |  |  |
|--------------|-------------------------|--------------|---------------------|--|--|
| Element Name |                         | Area (KM²)   |                     |  |  |
| Swcoib       | 0.15                    |              |                     |  |  |
|              | Downstream              |              |                     |  |  |
| Element Name | Downstream              |              |                     |  |  |
| Swc01b       | Sink - 1 - Post - dev   |              |                     |  |  |
|              | Loss Rate: Scs          |              |                     |  |  |
| Element Name | Percent Impervious Area | Curve Number | Initial Abstraction |  |  |
| Swc01b       | 90                      | 65           | 0.7                 |  |  |
|              |                         | - )          | •                   |  |  |
|              |                         |              |                     |  |  |
|              | Transform: Scs          |              |                     |  |  |
| Element Name | Transform: Scs<br>Lag   |              | ph Type             |  |  |

## **Global Results Summary**

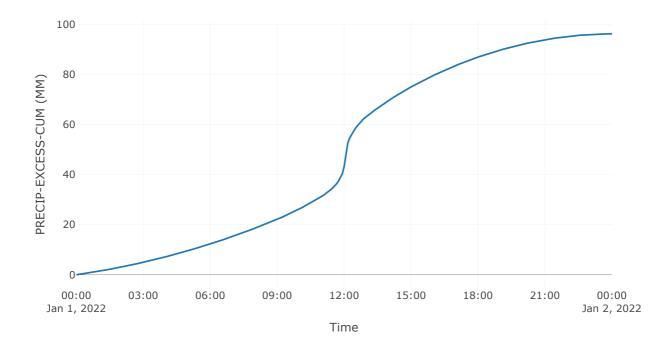
| Hydrologic Element    | Drainage Area (KM2) | Peak Discharge (M3/S) | Time of Peak     | Volume (MM) |
|-----------------------|---------------------|-----------------------|------------------|-------------|
| Swc01b                | 0.15                | 1.12                  | 01Jan2022, 12:35 | 96.11       |
| Sink - 1 - Post - dev | 0.15                | I.I2                  | 01Jan2022, 12:35 | 96.11       |

# Subbasin: SWC01B

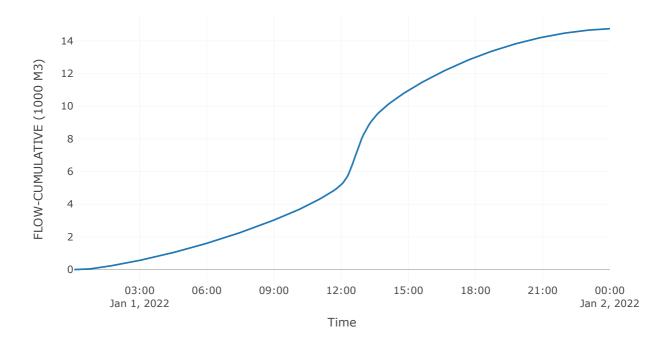
### **Area (KM²)** : 0.15


**Downstream** : Sink - I - Post - dev

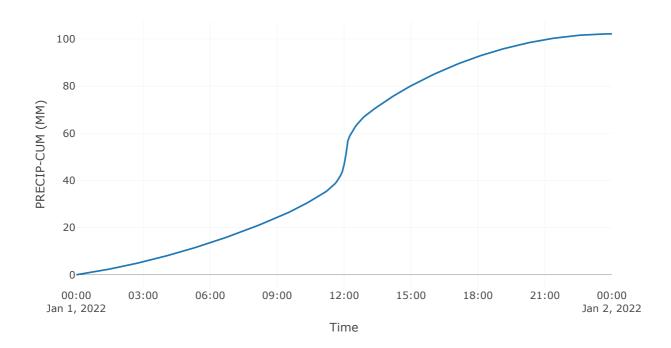
|                         | Loss Rate: Scs |
|-------------------------|----------------|
| Percent Impervious Area | 90             |
| Curve Number            | 65             |
| Initial Abstraction     | 0.7            |

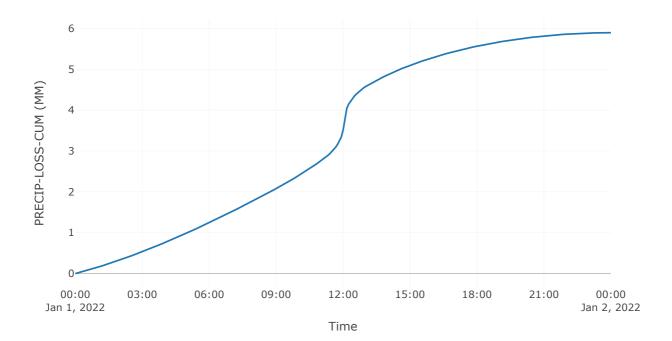

| Transform: Scs |          |  |  |
|----------------|----------|--|--|
| Lag            | 30.6     |  |  |
| Unitgraph Type | Standard |  |  |

| Results: SWCorB           |                  |  |  |
|---------------------------|------------------|--|--|
| Peak Discharge (M3/S)     | I.I2             |  |  |
| Time of Peak Discharge    | 01Jan2022, 12:35 |  |  |
| Volume (MM)               | 96.11            |  |  |
| Precipitation Volume (M3) | 15673.39         |  |  |
| Loss Volume (M3)          | 904.4            |  |  |
| Excess Volume (M3)        | 14768.99         |  |  |
| Direct Runoff Volume (M3) | 14744.55         |  |  |
| Baseflow Volume (M3)      | 0                |  |  |

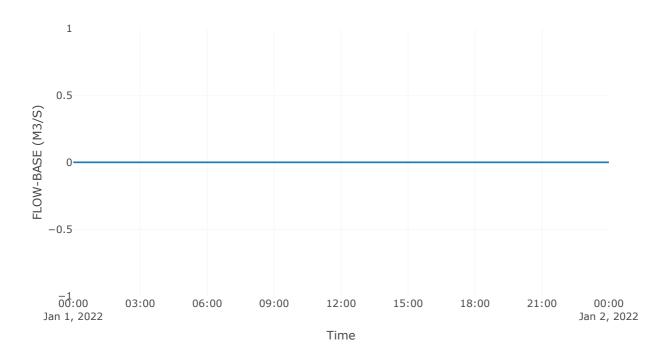

### Precipitation and Outflow

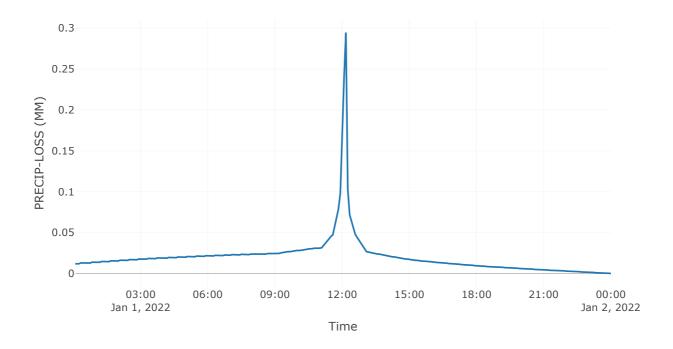



### Cumulative Excess Precipitation



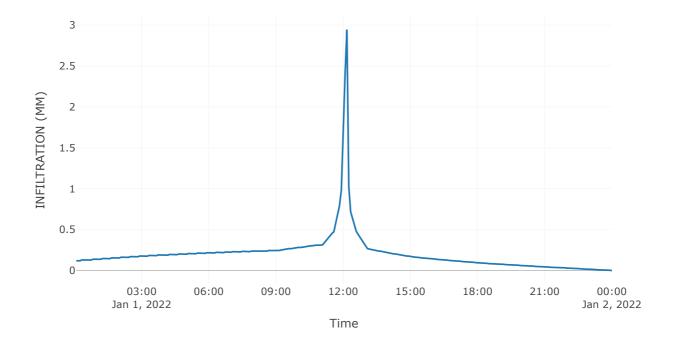

#### Cumulative Outflow





Cumulative Precipitation






#### Baseflow





Direct Runoff





**Project:** Calcutta\_Farms\_Industrial **Simulation Run:** Post-Dev\_IOYR\_CC\_3.8C **Simulation Start:** 31 December 2021, 24:00 **Simulation End:** I January 2022, 24:00

**HMS Version:** 4.9 **Executed:** 16 June 2022, 03:12

# **Global Parameter Summary - Subbasin**

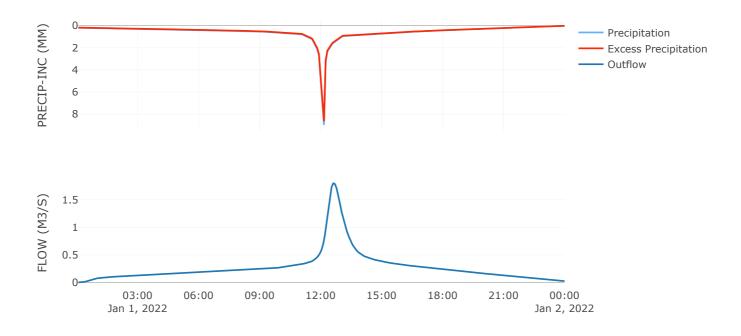
| Area (KM²)             |                                      |                     |                         |  |  |
|------------------------|--------------------------------------|---------------------|-------------------------|--|--|
| Element Name           | Area (KM²)                           |                     |                         |  |  |
| Swcoib                 | 0.15                                 |                     |                         |  |  |
|                        |                                      |                     |                         |  |  |
|                        | Downstream                           |                     |                         |  |  |
| Element Name           | Downstream                           |                     |                         |  |  |
| Swcoib                 | Si                                   | nk - 1 - Post - dev |                         |  |  |
|                        |                                      |                     |                         |  |  |
| Loss Rate: Scs         |                                      |                     |                         |  |  |
|                        |                                      |                     |                         |  |  |
| Element Name           | Percent Impervious Area              | Curve Number        | Initial Abstraction     |  |  |
| Element Name<br>Swcoib | <b>Percent Impervious Area</b><br>90 | Curve Number<br>65  | Initial Abstraction 0.7 |  |  |
|                        |                                      |                     |                         |  |  |
|                        |                                      |                     |                         |  |  |
|                        | 90                                   | 65                  |                         |  |  |

## **Global Results Summary**

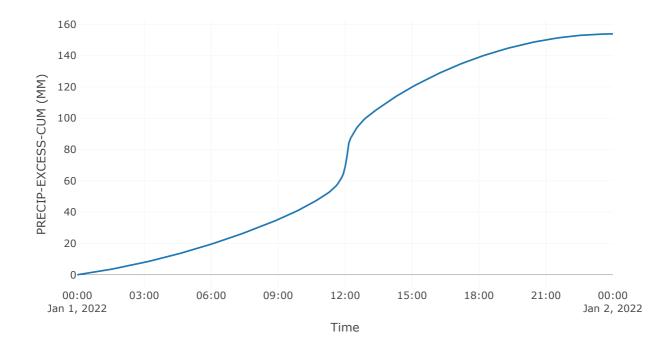
| Hydrologic Element    | Drainage Area (KM2) | Peak Discharge (M3/S) | <b>Time of Peak</b> | Volume (MM) |
|-----------------------|---------------------|-----------------------|---------------------|-------------|
| Swc01b                | 0.15                | I.8                   | 01Jan2022, 12:35    | 153.6       |
| Sink - 1 - Post - dev | 0.15                | I.8                   | 01Jan2022, 12:35    | 153.6       |

# Subbasin: SWC01B

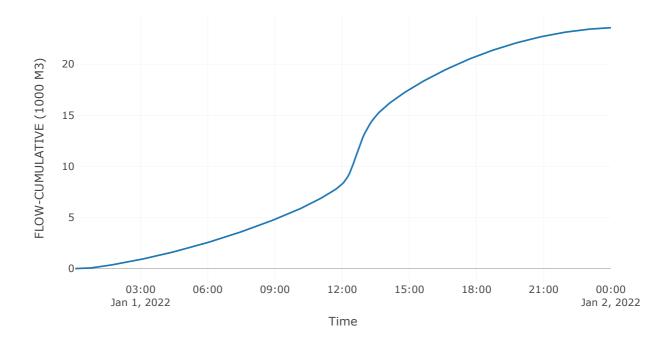
### **Area (KM²)** : 0.15


Downstream : Sink - I - Post - dev

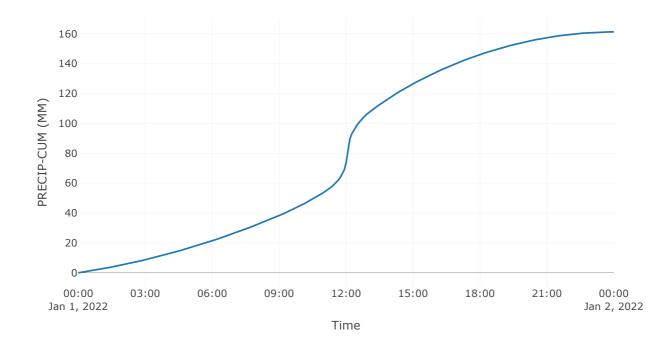
|                         | Loss Rate: Scs |
|-------------------------|----------------|
| Percent Impervious Area | 90             |
| Curve Number            | 65             |
| Initial Abstraction     | 0.7            |


| Transform: Scs |          |
|----------------|----------|
| Lag            | 30.6     |
| Unitgraph Type | Standard |

|                           | Results: SWC01B  |
|---------------------------|------------------|
| Peak Discharge (M3/S)     | I.8              |
| Time of Peak Discharge    | 01Jan2022, 12:35 |
| Volume (MM)               | 153.6            |
| Precipitation Volume (M3) | 24749.71         |
| Loss Volume (M3)          | II44.04          |
| Excess Volume (M3)        | 23605.68         |
| Direct Runoff Volume (M3) | 23565.41         |
| Baseflow Volume (M3)      | 0                |

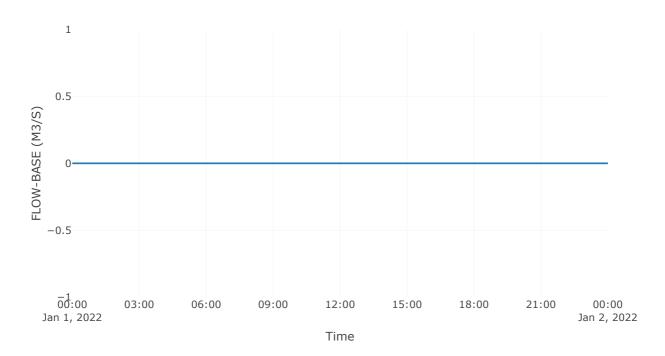

#### Precipitation and Outflow

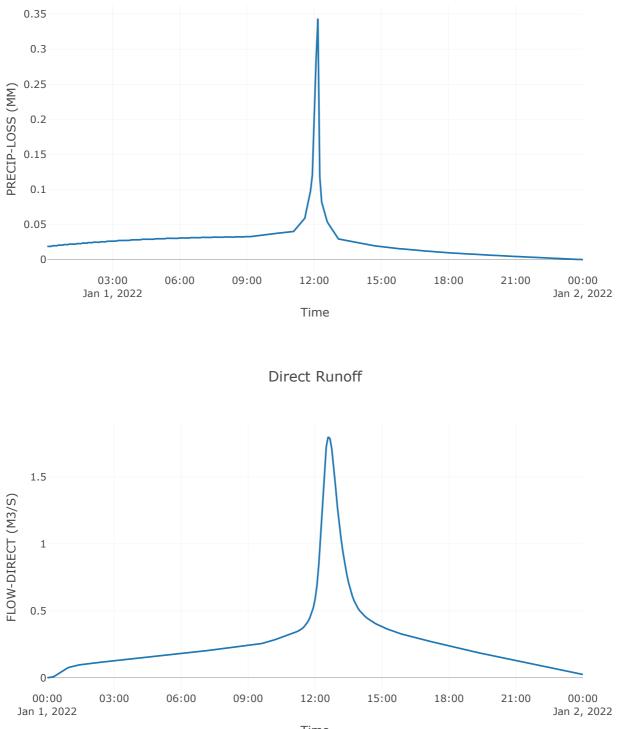



#### Cumulative Excess Precipitation



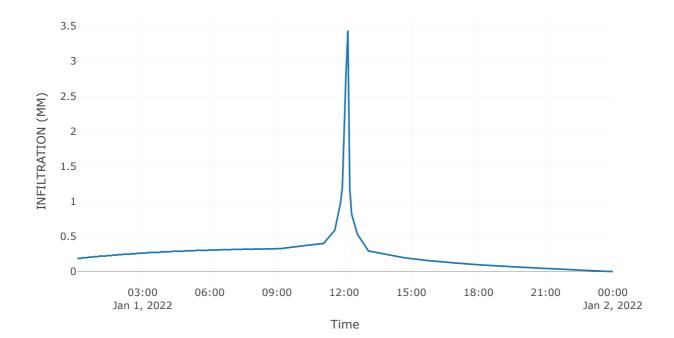
#### Cumulative Outflow





### Cumulative Precipitation






```
Baseflow
```





Time

### Soil Infiltration



**Project:** Calcutta\_Farms\_Industrial Simulation Run: Post-Dev\_100YR\_CC\_3.8C Simulation Start: 31 December 2021, 24:00 Simulation End: I January 2022, 24:00

**HMS Version:** 4.9 **Executed:** 16 June 2022, 03:12

# **Global Parameter Summary - Subbasin**

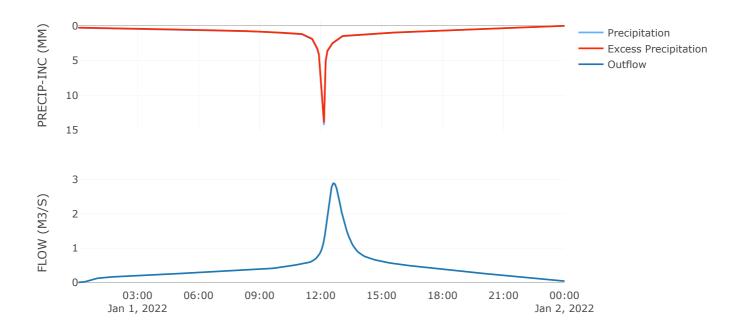
|                | Area (KM²)              |                       |                     |
|----------------|-------------------------|-----------------------|---------------------|
| Element Name   |                         | Area (KM²)            |                     |
| Swc01b         | 0.15                    |                       |                     |
|                | Downstream              |                       |                     |
| Element Name   |                         | Downstream            |                     |
| Swcoib         |                         | Sink - 1 - Post - dev |                     |
|                | Loss Rate: Scs          |                       |                     |
| Element Name   | Percent Impervious Area | a Curve Number        | Initial Abstraction |
| Swc01b         | 90                      | 65                    | 0.7                 |
|                |                         |                       |                     |
| Transform: Scs |                         |                       |                     |
| Element Name   | Lag Unitgraph Type      |                       | ph Type             |
|                | 8                       | 8                     |                     |

## **Global Results Summary**

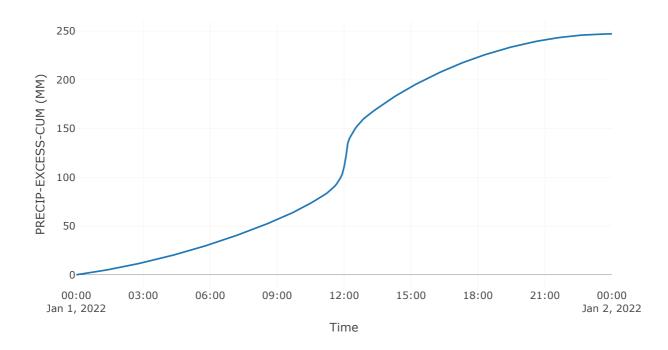
| Hydrologic Element    | Drainage Area (KM2) | Peak Discharge (M3/S) | Time of Peak     | Volume (MM) |
|-----------------------|---------------------|-----------------------|------------------|-------------|
| Swc01b                | 0.15                | 2.89                  | 01Jan2022, 12:35 | 246.8       |
| Sink - 1 - Post - dev | 0.15                | 2.89                  | 01Jan2022, 12:35 | 246.8       |

# Subbasin: SWC01B

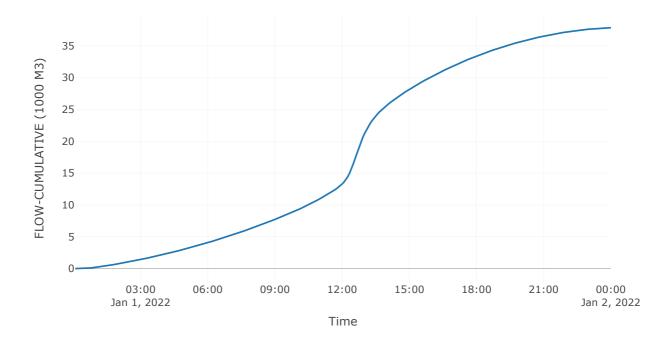
### **Area (KM²)** : 0.15


Downstream : Sink - I - Post - dev

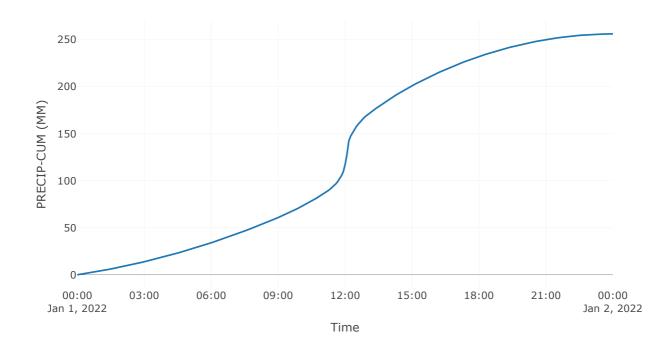
|                         | Loss Rate: Scs |
|-------------------------|----------------|
| Percent Impervious Area | 90             |
| Curve Number            | 65             |
| Initial Abstraction     | 0.7            |

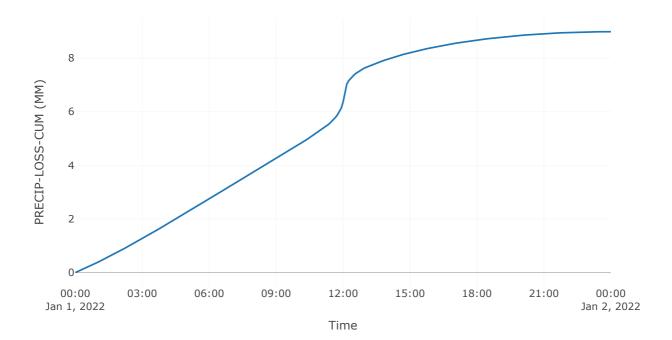

| Transform: Scs |          |
|----------------|----------|
| Lag            | 30.6     |
| Unitgraph Type | Standard |

|                           | Results: SWC01B  |
|---------------------------|------------------|
| Peak Discharge (M3/S)     | 2.89             |
| Time of Peak Discharge    | 01Jan2022, 12:35 |
| Volume (MM)               | 246.8            |
| Precipitation Volume (M3) | 39306.2          |
| Loss Volume (M3)          | 1377.45          |
| Excess Volume (M3)        | 37928.75         |
| Direct Runoff Volume (M3) | 37864.27         |
| Baseflow Volume (M3)      | 0                |

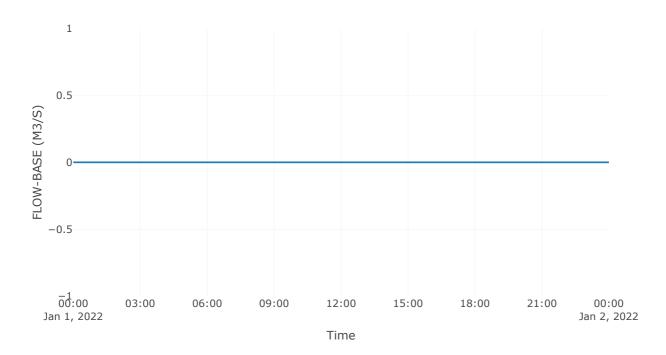

### Precipitation and Outflow

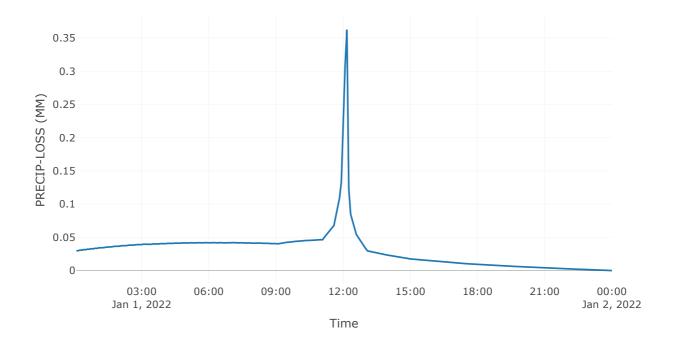



### Cumulative Excess Precipitation




#### Cumulative Outflow

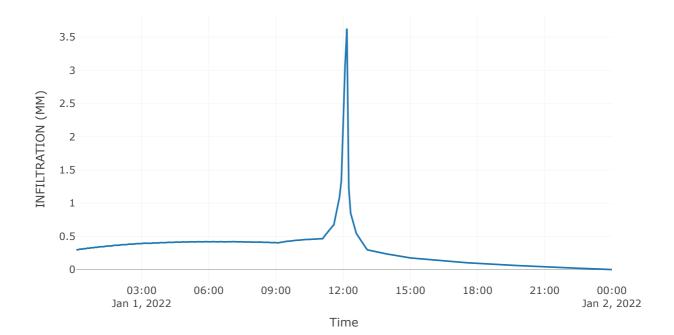




Cumulative Precipitation





```
Baseflow
```






Direct Runoff



### Soil Infiltration

